25

LIMIT AND CONTINUITY

If a function $f(x)$ approaches L when x approaches ' a ', we say that L is the limiting value of $f(x)$ symbolically it is written as $\lim _{x \rightarrow 0} f(x)=L$

LEFT AND RIGHT HAND LIMITS

- If a function $\mathrm{f}(\mathrm{x})$ approaches a limit t_{1}, as x approaches ' a ' from left, we say that the left hand limit of $\mathrm{f}(\mathrm{x})$ as $\mathrm{x} \rightarrow \mathrm{a}$ is 1_{1}

$$
\lim _{x \rightarrow \mathrm{a}^{-}} f(x)=l_{1}
$$

$$
\text { Or } \lim _{h \rightarrow 0} f(a-h)=l_{1}, h>0
$$

- If a function $\mathrm{f}(\mathrm{x})$ approaches a limit 1_{2}, as x approaches 'a' fromright, we say that the right hand hand limit of $\mathrm{f}(\mathrm{x})$ as $\mathrm{x} \rightarrow \mathrm{a}$ is 1_{2}

$$
\lim _{x \rightarrow \mathrm{a}^{+}} f(x)=l_{2}
$$

$$
\text { Or } \lim _{h \rightarrow 0} f(a+h)=l_{2}, h>0
$$

I. $\quad \lim _{x \rightarrow \mathrm{a}^{+}} f(x)=l \Rightarrow$
II. $\quad \lim _{x \rightarrow a} f(x)=l$
and $\lim _{x \rightarrow \mathrm{a}^{-}} f(x)=l$
III. $\quad \lim _{x \rightarrow \mathrm{a}^{+}} f(x)=l_{1}$
and $\quad \lim _{x \rightarrow \mathrm{a}^{-}} f(x)=l_{2} \quad \Rightarrow$
$\lim _{x \rightarrow a} f(x)$ not exit
IV. $\lim _{x \rightarrow \mathrm{a}^{+}} f(x)$ or $\lim _{x \rightarrow \mathrm{a}^{-}} f(x)$ does not exit $\Rightarrow \lim _{x \rightarrow a} f(x)$ not exit

BASIC THEOREMS ON LIMITS

I. $\lim _{x \rightarrow a} c x=c \lim _{x \rightarrow a} x$,c being a constant
II. $\quad \lim _{x \rightarrow a}[g(x)+h(x)+p(x)+$
$\cdots.]=\lim _{x \rightarrow a} g(x)+\lim _{x \rightarrow a} h(x)+$ $\lim _{x \rightarrow a} p(x)+\ldots$.
III. $\quad \lim _{x \rightarrow a}[f(x) \cdot g(x)]=$

$$
\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)
$$

IV. $\lim _{x \rightarrow a}\left\{\frac{f(x)}{g(x)}\right\}=\frac{\lim _{x \rightarrow a} x}{\lim _{x \rightarrow a} x}$

LIMITS OF SOME OF THE IMPORTANT FUNCTIONS

I. $\quad \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$ where n is a positive integer
II. $\quad \lim _{x \rightarrow 0} \sin x=$

0 and $\lim _{x \rightarrow 0} \cos x=1$
III. $\quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
IV. $\lim _{x \rightarrow 0}(1+x)^{1 / x}=\mathrm{e}$
V. $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=\lim _{x \rightarrow 0} \frac{1}{x} \log (1+$
$x)=\lim _{x \rightarrow 0} \log (1+x)^{1 / x}$
VI. $\quad \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$

CONTINUITY OF A FUNCTION AT A POINT

1. A function $f(x)$ is said to be continuous in an open inteval (a, b) if it is continuous at every point of (a, b).
2. A function $f(x)$ is said to be continuous in the closed interval $[a, b]$ if it is continuous at every point of the open interval]a, b [and is continuous at the point a from the right and continuous at b from the left.

$$
\begin{gathered}
\lim _{x \rightarrow \mathrm{a}^{+}} f(x)=f(a) \\
\text { and } \\
\lim _{x \rightarrow \mathrm{~b}^{-}} f(x)=f(b)
\end{gathered}
$$

Properties of Continuous Functions

If $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are two functions which are continuous at a point $x=a$, then
(i) $\quad \mathrm{Cf}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$, where C is a constant.
(ii) $\mathrm{f}(\mathrm{x}) \pm \mathrm{g}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$.
(iii) $f(x) . g(x)$ is continuous at $x=a$.)
(iv) $\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$, provided $\mathrm{g} \neq 0$
(v) $|\mathrm{f}(\mathrm{x})|$ is continuous at $\mathrm{x}=\mathrm{a}$.

[^0]1. If $f(x)=\left\{\begin{array}{cc}4 x, & x<0 \\ 1, & x=0 \\ 3 x^{2}, & x>0\end{array}\right.$, then $\lim _{x \rightarrow 0} f(x)$ equals-
(A) 0
(B) 1
(C) 3
(D) Does not exist
2. If $f(x)=\left\{\begin{array}{cc}-1, & x<-1 \\ x^{3}, & -1 \leq x \leq 1 \\ 1-x, & 1<x<2 \\ 3-x^{2}, & x>2\end{array}\right.$ then-
(A) $f(x)=1$
(B) $\lim _{x \rightarrow 1^{+}} f(x)=1$
(C) $\lim _{x \rightarrow 2^{+}} f(x)=-1$
(D) $\lim _{x \rightarrow 2^{-}} f(x)=0$
3. The value of $\lim _{x \rightarrow \pi / 2} \frac{1-\sin ^{3} x}{\cos ^{2} x}$ is-
(A) $-\frac{3}{2}$
(B) $\frac{3}{2}$
(C) 1
(D) 0
4. The value of $\lim _{x \rightarrow 3}\left(\frac{x^{4}-81}{x-3}\right)$ is -
(A) -27
(B) 10
(C) undefined
(D) None of these
5. $\lim _{\mathrm{x} \rightarrow 0} \frac{\sqrt{1+\mathrm{x}}-\sqrt{1-\mathrm{x}}}{\sqrt{1+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}^{2}}}$ equals-
(A) 1
(B) $1 / 2$
(C) 0
(D) Does not exist
6. $\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}$ equals-
(A) 0
(B) $3 / 2$
(C) $1 / 4$
(D) None of these
7. Function $f(x)=\left\{\begin{array}{ll}1+x, & \text { when } x<2 \\ 5-x, & \text { when } x>2\end{array} ; x=2\right.$ is continuous at $\mathrm{x}=2$, if $\mathrm{f}(2)$ equals -
(A) 0
(B) 1
(C) 2
(D) 3
8. If $f(x)=\left\{\begin{array}{cl}x \cos \frac{1}{x}, & x \neq 0 \\ k & x=0\end{array}\right.$ is continuous at $x=0$, then
(A) $k>0$
(B) $\mathrm{k}<0$
(C) $\mathrm{k}=0$
(D) $\mathrm{k} \geq 0$
9. If function $f(x)=\left\{\begin{array}{ll}x^{2}+2, & x>1 \\ 2 x+1, & x=1\end{array}\right.$ is continuous at $x=1$, then value of $f(x)$ for $\mathrm{x}<1$ is-
(A) 3
(B) $1-2 x$
(C) $1-4 x$
(D) None of these
10. If $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to -
(A) 8
(B) 1
(C) -1
(D) None of these

Stretch Yourself

1. If $f(x)=\frac{1-\cos (1-\cos x)}{x^{4}},(x \square 0)$ is continuous everywhere, then find $f(0)$.
2. Is Function $f(x)=$ $\left\{\begin{array}{cc}\frac{\left(b^{2}-a^{2}\right)}{2}, & 0 \leq x \leq a \\ \frac{b^{2}}{2}-\frac{x^{2}}{6}-\frac{a^{3}}{3 x}, & a<x \leq b, \\ \frac{1}{3}\left(\frac{b^{3}-a^{3}}{x}\right), & x>b\end{array}\right.$
3. If $[x]$ denotes the greatest integer $\leq x$, then
Find $\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left\{\left[1^{2} x\right]+\left[2^{2} x\right]+\left[3^{3} x\right]+\right.$ $\ldots .+\left[n^{2} \mathrm{x}\right]$
4. Find the value of $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\log \left(x-\frac{\pi}{2}\right)}{\tan x}$
5. Find $\lim _{x \rightarrow \pi / 2} \frac{\cot x-\cos x}{(\pi-2 x)^{3}}$

Hint to Check Yourself

1 A	2 C	3 B	4 B	5 D
6 D	7 D	8 C	9 A	10 D

[^0]: Check Your Progress

