
11

OPERATORS AND EXPRESSIONS

IN ‘C’

11.1 INTRODUCTION

Operators form expressions by joining individual constants, vari-

ables, array elements as discussed in previous lesson. C includes a

large number of operators which fall into different categories. In

this lesson we will see how arithmetic operators, unary operators,

relational and logical operators, assignment operators and the

conditional operators are used to form expressions.

The data items on which operators act upon are called operands.

Some operators require two operands while others require only one

operand. Most operators allow the individual operands to be

expressions. A few operators permit only single variable as operand.

11.2 OBJECTIVES

After going through this lesson you will be able to

l recognize arithmetic operators

l explain unary operators

l define relational, logical, assignment & conditional operators

l explain library functions

 Operators and Expressions in ‘C’ :: 177

11.3 ARITHMETIC OPERATORS

There are five main arithmetic operators in ‘C’. They are ‘+’ for addi-

tions, ‘-' for subtraction, ‘*’ for multiplication, ‘/’ for division and ‘%’

for remainder after integer division. This ‘%’ operator is also known

as modulus operator. For exponentiation there is no specific operator

in ‘C’ instead there is one library function known as pow to carry

out exponentiation.

Operands can be integer quantities, floating-point quantities or char-

acters. The modulus operator requires that both operands be inte-

gers & the second operand be nonzero. Similarly, the division op-

erator (/) requires that the second operand be nonzero, though the

operands need not be integers. Division of one integer quantity by

another is referred to as integer division. With this division the

decimal portion of the quotient will be dropped. If division operation

is carried out with two floating- point numbers, or with one floating-

point number. & one integer, the result will be a floating-point

quotient.

If we take two variables say x and y and their values are 20 and 10

respectively, and apply operators like addition, subtraction, division,

multiplication and modulus on them then their resulted values will

be as follows:

x+y 30

x-y 10

x*y 200

x/y 2

x %y 0

If one or both operands represent negative values, then the addi-

tion, subtraction, multiplication and division operations will result

in values whose signs are determined by the usual rules of algebra.

The interpretation of remainder operation is unclear when one of

the operands is negative.

Operands that differ in type may undergo type conversion before

the expression takes on its final value. The final result has highest

precision possible, consistent with data types of the operands. The

following rules apply when neither operand is unsigned.

l If one operand is a floating point type and the other is a char or

178 :: Computer Applications

an int, the char/int will be converted to the floating point type

of the other operand and the result will be expressed as such.

So, an operation between an int and a double will result in

double.

l If both operands are floating-point types with different precisions,

the lower-precision operand will be converted to the precision

of the other operand and the result will be expressed in this

higher precision.

Float & double → double

Float & long double → long double

Double & long double → long double

l If neither operand is a floating point type or a long int, then

both operands will be converted to int & the result will be int.

l If neither operand is a floating point type but one is a long int,

the other will be converted to long int & the result will be long

int.

The value of an expression can be converted to a different data type

if desired. The ‘C’ programmer also has the choice of explicitly speci-

fying how the values are to be converted in a mixed mode expres-

sion. This feature is known in ‘C’ as coercion and may be accom-

plished using what is called the cast operator . The name of data

type to which the conversion is to be made is enclosed in parenthe-

ses and placed directly to the left of the value to be converted; the

word “cast” never is actually used. The example of type casting is as

follows:

int a=17;

float b;

b=(float)a+ 11.0;

The cast operator converts the value of int a to its equivalent float

representation before the addition of 11.0 is carried out. The prece-

dence of the cast operator is the same as that of the unary minus

operator. The cast operator can be used on a constant or expression

as well as on a variable e.g.

(int) 7.179

(double) (5*3/8)

 (float)(a+4)

 Operators and Expressions in ‘C’ :: 179

In the second example, the cast is performed only after the entire

expression within the parentheses is evaluated.

Remember due to type casting, the data type associated with the

expression itself is not changed, but it is the value of the expression

that undergoes type conversion wherever the cast appears. This is

particularly relevant when the expression consists of only a single

variable.

The operator within C are grouped hierarchically according to their

order of evaluation known as precedence. Obviously operations with

a higher precedence are carried out before operations having a lower

precedence. The natural order can be altered by making use of

parentheses.

Arithmetic operators *,/ and % are under one precedence group

and +,- are under another precedence group. The operators *, / and

% have higher precedence than + and -. In other words,

multiplication, division and remainder operations will be carried

out before addition and subtraction.

Another important point to consider is the order in which consecutive

operations within the same precedence group are carried out. This

is known as associativity. Within each of the precedence groups

described above, the associativity is left to right. In other sense,

consecutive addition and subtraction operations are carried out from

left to right, as are consecutive multiplication, division and remainder

operations.

As stated earlier, the natural precedence of operations can be al-

tered through the use of parentheses, thus allowing the arithmetic

operations within an expression to be carried out in any desired

order. In fact, parentheses can be nested, one pair within another.

In such cases the innermost operations are carried out first, then

the next innermost operations, and so on. It is perfectly acceptable

to use redundant parentheses if they help to make the expression

more meaningful. Whenever parentheses are used, however, be sure

that there are as many left parentheses as right.

Let us understand this with the help of one example, say there are

3 variables a,b, and c having values 5,10 and 15 respectively. The

different operations on these three variables and their result is as

follows:

a+b/c=5

b*c-a=145

180 :: Computer Applications

a*b/c= 3

(a+c)*b/a=40

In the first expression, division is done first because division has a

higher precedence than addition.

In the second expression, the multiplication is done before the sub-

traction.

In the third expression, the calculation proceeds from left to right,

but truncation takes place in the division operation.

Finally in the last case (a+c)*b/a, the contents of the parentheses

are evaluated first, then it is multiplied & finally divided. In this

case no truncation takes place.

Sometimes it is a good idea to use parentheses to clarify an expres-

sion, even though the parentheses may not be required, but use of

overly complex expressions should be avoided. Such expressions

are difficult to read, and they are often written incorrectly because

of unbalanced parentheses.

INTEXT QUESTIONS

1. What is the effect of dividing an integer by a real quantity?

Also, what is this effect called?

2. How would you use the cast operator to convert(7*9/11) to

double?

11.4 UNARY OPERATORS

‘C’ includes a class of operators that act upon a single operand to

produce a new value. Such operators are known as unary operators.

Unary operators usually precedes their single operands, though some

unary operators are written after their operands.

The most common unary operator is unary minus, where a minus

sign precedes a numerical constant, a variable or an expression.

e.g.

-5,-10, -20(numbers)

x=-y(variable)

 Operators and Expressions in ‘C’ :: 181

Of all the arithmetic operators, the unary minus has the highest

precedence level. Thus in an expression such as

y=x+z* -b;

evaluation commences with the unary minus, which negates the

value of b. Then z is multiplied by –b, and finally the addition takes

place. The result is stored in the variable y. So, the use of parentheses

to separate the two adjacent operators and avoid possible confusion.

Y=x+z*(-b);

In C, all numeric constants are positive. Thus a negative number is

actually an expression, consisting of the unary minus operator,

followed by a positive numeric constant.

It is to be noted here that the unary minus operation is distinctly

different from the arithmetic operator which denotes subtraction(-).

The subtraction operator requires two separate operands.

Two other commonly used unary operators are increment operator,

++, & the decrement operator - -. The increment operator causes its

operand to increased by one, whereas the decrement operator causes

its operand to be decreased by one. The operand used with each of

these operators must be a single variable. For example, x is an inte-

ger variable that has been assigned a value of 10. The expression ++

x, which is equivalent to writing x= x+1, causes the value of x to be

creased to 11. Similarly the expression --x, which is equivalent to

x=x-1, causes the original value of x to be decreased to 9.

The increment and decrement operators can each be utilized in two

different ways, depending on whether the operator is written before

or after the operand. If the operator precedes the operand, then the

value of operand will be altered before it is used for its intended

purpose within the program. If, however the operator follows the

operand then the value of the operand will be changed after it is

used.

For example, if the value of x is initially 10, then if we increase it by

saying ++x then the current value of x will be 11.

Similarly for decrement operator the current value of x will be 9 if

we say -- x.

Another unary operator is the sizeof operator . This operator re-

182 :: Computer Applications

turns the size of its operand, in bytes. This operator always precedes

its operand. The operand may be an expression, or it may be a cast.

e.g sizeof (x);

sizeof (y);

If x is of integer type variable and y is of floating point variable then

the result in bytes is 2 for integer type and 4 for floating point

variable.

Consider an array school[]= “National”

Then, sizeof (school) statement will give the result as 8.

A cast is also considered to be unary operators. In general terms, a

reference to the cast operator is written as (type). Thus, the unary

operators we have encountered so far are -,++,- -, sizeof & (type).

Unary operators have a higher precedence than arithmetic opera-

tors. Hence, if a unary minus operator acts upon an arithmetic ex-

pression that contains one or more arithmetic operators, the unary

minus operation will be carried out first. The associativity of the

unary operators is right to left.

INTEXT QUESTIONS

3. What are unary operators?

4. How many operands are associated with a unary operators?

5. Describe the difference between increment and decrement op-

erators.

6. What is the associativity of unary operators?

7. What is sizeof operator?

11.5 RELATIONAL, LOGICAL, ASSIGNMENT, CONDITIONAL

OPERATORS

Relational operators are symbols that are used to test the relation-

ship between two variables, or between a variable and a constant.

The test for equality, is made by means of two adjacent equal signs

with no space separating them. ‘C’ has six relational operators as

follows:

 Operators and Expressions in ‘C’ :: 183

> greater than

< les than

!= not equal to

>= greater than or equal to

>= less than or equal to

These operators all fall within the same precedence group, which is

lower than the unary and arithmetic operators. The associativity of

these operators is left-to-right.

The equality operators ==and != fall into a separate precedence group,

beneath the relational operators. Their associativity is also from left-

to-right.

These relational operator are used to form logical expression

represeating condition thet are either true or false. The resulting

expression will be of type integer, since true is represented by the

integer value and false is represented by the value0.

Let us understand operations of these relational operaters with the

help of an example: x=2, y=3, z=4.

x<y true 1

(x+y) >=z true 1

(y+z)>(x+7) false 0

z!=4 false 0

y ==3 true 1

Here, true or false represents logical interpretation and they have

values 1 and 0 respectively.

There are two logical operators in C language, they are and or. They

are represented by && and !! respectively.

These operators are refered to as logical and, logical or, respectively.

The result of a logical and operation will be true only if both operands

are true, whereas the result of a logical or operation will be true if

either operand is true or if both operands are true.

The logical operators act upon operands that are themselves logical

expressions. Let us understand it, with the help of a following

example:

184 :: Computer Applications

Suppose x=7, y=5.5 , z= 'w'

Logical expressions using these variables are as follows:

Expression Interpretation Value

(x>=6) &&(z= =’w’) true 1

(x>=6) (y = =119) true 1

(x<=6) && (z=='w') false 0

Each of the logical operators falls into its own precedence group.

Logical and has a higher precedence than logical or. Both prece-

dence groups are lower than the group containing the equality op-

erators. The associativity is left to right.

'C' also includes the unary operator !, that negates the value of a

logical expression. This is known as logical negation or logical NOT

operator. The associativity of negation operator is right to left.

Precedence of operators in decreasing order is as follows:

1. -, ++ - - Operators ! size of (type)

2. * / %

3. + -

4. < <= > > =

5. == !=

6. &&

7.

If you have trouble remembering all these rules of precedence you

can always resort to parentheses in order to express your order

explicitly.

INTEXT QUESTIONS

8. What is the difference between = and == ?

9. What logical operator negates the truth value of the expression

to its immediate right?

10. What integer value is equivalent to false?

11. What is the associativity of logical NOT?

 Operators and Expressions in ‘C’ :: 185

There are several different assignment operators in C. All of them

are used to form assignment expression, which assign the value of

an expression to an identifier. The most commonly used assign-

ment operator is =. The assignment expressions that make use of

this operator are written in the form:

identifier=expression

where identifier generally represents a variable and expression rep-

resents a constant, a variable or a more complex expression.

Assignment operator = and the equality operator == are distinctly

different. The assignment operator is used to assign a value to an

identifier, whereas the equality operator is used to determine if two

expressions have the same value. These two operators cannot be

used in place of one another.

If the two operands in an assignment expression are of different

data types, then the value of the expression on the right will auto-

matically be converted to the type of the identifier on the left. The

entire assignment expression will then be of this same data type.

For example

A floating point value may be truncated if assigned to an integer

identifier, a double-precision value may be rounded if assigned to a

floating-point identifier, an integer quantity may be altered if as-

signed to a shorter integer identifier or to a character identifier.

Multiple assignments of the form

Identifier 1= identifier 2 = - - - -= expression are allowed in ‘C’.

In such situations, the assignments are carried out from right to

left.

Let us understand this with the help of following example

x=y=10 (x and y are integer variables)

will cause the integer value 10 to be assigned to both x and y.

Similarly, x=y=10.5

will cause the integer value 10 to be assigned to both x and y,

truncation occurs when the floating point value 10.5 is assigned

to the integer variable y.

‘C’ also contains the five additional assignment operators +=, -

=, *=, /= & %=.

186 :: Computer Applications

 expression1+= expression2

is equal to

expression1= expression1 + expression2

Similarly expression1 - = expression2 is equivalent to

expression1 = expression1 - expression 2

Assignment operators have a lower precedence than any of the other

operators that have been discussed earlier. The decreasing order of

precedence is given below, the associativity of assignment operators

is right to left.

- ++ - - ! sizeof (type)

* / %

+ -

< <= > >=

= = !=

&&

| |

= + = - = * = /= %=

For example x* = -3 *(y+z)/4

is equivalent to x= x*(-3 *(y+z)/4)

In this example first (y+z) will be evaluated, then multiplication will

take place. Then division, and finally multiplication will take place.

INTEXT QUESTIONS

12. What are the 6 assignment operators discussed above ?

13. How can multiple assignments be written in C?

There is one conditional operator(?:) in ‘C’ language. An expres-

sion that makes use of the conditional operator is called a condi-

tional expression.

A conditional expression is written in the form

Expression 1 ? expression 2 : expression 3

When evaluating a conditional expression, expression 1 is evalu-

ated first. If expression 1 is true, then expression 2 is evaluated and

 Operators and Expressions in ‘C’ :: 187

this becomes the value of the conditional expression. If expression 1

is false, then expression 3 is evaluated and this becomes the value

of the conditional expression

For example (i< 1) ? 0:200

i is integer variable here.

The expression (i<1) is evaluated first, if it is true the entire condi-

tional expression takes on the value 0. Otherwise, the entire condi-

tional expression takes on the value 200.

Conditional expression frequently appear on the righthand side of a

simple assignment statement. The resulting value of the conditional

expression is assigned to the identifier on the left.

The conditional operator has its own precedence, just above the

assignment operator. The associativity is right-to-left.

Decreasing order of precedence is as follows:

1 - ++ - - ! sizeof (type)

2 * / %

3 + - ?:

4 < <= > >=

5 = = !=

6 &&

7 ! !

! !

8 ?:

9 = += -= *= /= %=

11.6 LIBRARY FUCNTIONS

Library functions carry out various commonly used operations or

calculations. Some functions return a data item to their access point,

others indicate whether a condition is true or false by returning 1 or

0 respectively, still others carry out specific operations on data items

but do not return anything. Features which tend to be computer

dependent are generally written as library functions.

188 :: Computer Applications

Functionally similar library functions are usually grouped together

as object programs in separate library files. These library files are

supplied as a part of each C compiler.

A library function is accessed simply by writing the function name,

followed by a list of arguments that represent information being

passed to the function. The arguments must be enclosed in paren-

theses and separated by commas. The arguments can be constants,

variable names or more complex expressions. The parentheses must

be present, even if there are no arguments, A function that returns

a data item can appear anywhere within an expression in place of a

constant or an identifier. A function that carries out operations on

data items but does not return anything can be accessed simply by

writing the function name, since this type of function reference con-

stitutes an expression statement. In order to use a library function

it may be necessary to include certain specific information within

the main portion of the program. This information is generally stored

in special files supplied with the compiler. Thus, the required infor-

mation can be obtained simply by accessing these special files. This

is accomplished with the preprocessor statement.

 # include <filename>

The list of some commonly used library functions are:

abs(i) to determine absolute value of i.

exp(i) raise e to the power i.

log(d) determine natural logarithm of d.

pow(d1,d2) returns d1 raised to the d2 power

putchar(c) send a character to the standard output device

sqrt(d) return the square root of d.

You can see rest of the library functions available in C in Help topic

of ‘C’.

INTEXT QUESTIONS

14. Define the associativity of conditional operators.

15. Are the library functions actually a part of the ‘C’ language?

 Operators and Expressions in ‘C’ :: 189

11.7 WHAT YOU HAVE LEARNT

In this lesson you have learnt about 'C' arithmatic, unary, relational,

logical, assignment and conditional operators. The concept of library

functions here also been discussed.

11.8 TERMINAL QUESTIONS

1. What is an operator? Describe different types of operators?

2. What is an operand ? What is the relationship between opera-

tors & operands ?

3. Summarize the rules that apply to expression whose operands

are of different type?

4. When should parentheses be included within the expression?

5. How can the conditional operator be combined with the assign-

ment operator to form an “if-else” type statement?

11.9 KEY TO INTEXT QUESTIONS

1. The integer is temporarily converted to its floating point equiva-

lent before the calculation is performed. This automatic opera-

tion is known as implicit conversion.

2. (double) (7*9/11)

3. Operators that act upon a single operand to produce a new

value are called unary operator.

4. Only one

5. Increment means increase the value, or add the specified value

to the variable’s value. Decrement means decrease or less the

value of the variable.

6. Right to left

7. It will display the total size of variable or data-type.

8. = is the assignment operator and == is the equality operator.

9. not or !

190 :: Computer Applications

10. zero

11. right to left

12. =, +=, - =, * =, /= & %=

13. identifier 1 = identifier2 = - - - -= expressions.

14. Right to left

15. No

