
Senior Secondary Course
Learner’s Guide: Computer Science (330)

1

 INHERITANCE: The capability of a

class to derive properties and

characteristics from another class is

called Inheritance. Inheritance is one of

the most important features of Object

Oriented Programming.

 SUB CLASS: The class that inherits

properties from another class is called

Sub class or Derived Class.

 SUPER CLASS: The class whose

properties are inherited by sub class is

called Base Class or Super class.

 WHY AND WHEN TO USE

INHERITANCE? : Let’s consider a

group of vehicles named Bus, Car and

Truck. The methods like fuelAmount(),

applyBrakes() and capacity() will be the

same for all three classes.

Using Inheritance:

 TYPES OF INHERITANCE:

 IMPLEMENTING INHERITANCE:

Syntax:

Class subclass_name: access_mode

base_class_name

{

 //body of subclass

};

o Subclass_name – It is the name of

the sub class.

o Access_mode – It is the mode in

which you want to inherit this sub

class such as

Private/Public/Protected.

19

INHERITANCE- EXTENDING CLASSES

Senior Secondary Course
Learner’s Guide: Computer Science (330)

2

o Base_class_name - It is the name of

the base class from which you want to

inherit the sub class.

 MODES OF INHERITANCE:

PROGRAM:

class A
{
public:
 int x;
protected:
 int y;
private:
 int z;
};

class B : public A
{
 // x is public
 // y is protected
 // z is not accessible from B
};

class C : protected A
{
 // x is protected
 // y is protected
 // z is not accessible from C
};

class D : private A // 'private' is default for

classes
{
 // x is private
 // y is private
 // z is not accessible from D
};

 PUBLIC VISIBILITY MODE:

class student // base class

 { private :

 int x; // base class private members

void getdata ();

public: //base class public members

int y;

void putdata();

protected: //base class public members

int z;

void check ();

};

class marks : public student // class marks

derived class

{

private :

 int a ;

void readdata ();

public :

int b;

void writedata ();

protected :

int c;

void checkvalue ();

};

Class Student Class marks

Private Section

X getData()

Public Section

 Y putData()

Protected Section

Z check()

Private Section

a readData()

Public Section

 b writeData()

Y putData()

Protected Section

 c checkValue

 Z check()

Senior Secondary Course
Learner’s Guide: Computer Science (330)

3

 PRIVATE VISIBILITY MODE:
Class Student Class marks

 PROTECTED VISIBILITY MODE:
A member declared as protected is accessible

by the member functions of the class and its

derived classes. It cannot be accessed by the

member functions other than these classes.

class student class marks

 SINGLE INHERITANCE:

SYNTAX:

class subclass_name : access_mode

base_class

{

 //body of subclass

};

PROGRAM:

class Vehicle {
 public:
 Vehicle()
 {
 cout << "This is a Vehicle" << endl;
 }
};

// sub class derived from a single base

classes
class Car: public Vehicle{

};

// main function
int main()
{
 // creating object of sub class will
 // invoke the constructor of base classes
 Car obj;
 return 0;
}

OUTPUT:

This is a Vehicle

Private Section

X getData()

Public Section

 Y putData()

Protected Section

Z check()

Private Section

a readData()

 Y putData()

 Z check()

Public Section

b writeData()

Protected Section

 c checkValue()

Private Section

X getData()

Public Section

 Y putData()

Protected Section

Z check()

Private Section

a readData()

Y putData()

 Z check()

Public Section

b writeData()

Protected Section

 c checkValue()

Senior Secondary Course
Learner’s Guide: Computer Science (330)

4

 MULTIPLE INHERITANCE:

SYNTAX:

class subclass_name : access_mode

base_class1, access_mode base_class2,

{

 //body of subclass

};

PROGRAM:

#include <iostream>

using namespace std;

// first base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// second base class

class FourWheeler {

 public:

 FourWheeler()

 {

 cout << "This is a 4 wheeler Vehicle" <<

endl;

 }

};

// sub class derived from two base classes

class Car: public Vehicle, public

FourWheeler {

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

OUTPUT:

This is a Vehicle

This is a 4 wheeler Vehicle

 MULTI-LEVEL INHERITANCE:

PROGRAM:

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// first sub_class derived from class vehicle

class fourWheeler: public Vehicle

{ public:

 fourWheeler()

 {

 cout<<"Objects with 4 wheels are

vehicles"<<endl;

 }

};

Senior Secondary Course
Learner’s Guide: Computer Science (330)

5

// sub class derived from the derived base

class fourWheeler

class Car: public fourWheeler{

 public:

 Car()

 {

 cout<<"Car has 4 Wheels"<<endl;

 }

};

// main function

int main()

{

 //creating object of sub class will

 //invoke the constructor of base classes

 Car obj;

 return 0;

}

OUTPUT:

This is a Vehicle

Objects with 4 wheels are vehicles

Car has 4 Wheels

 HIERACHICAL INHERITANCE:

PROGRAM:

#include <iostream>
using namespace std;

// base class
class Vehicle
{
 public:
 Vehicle()
 {
 cout << "This is a Vehicle" << endl;
 }
};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Car obj1;

 Bus obj2;

 return 0;

}

OUTPUT:

This is a Vehicle

This is a Vehicle

 HYBRID INHERITANCE:

PROGRAM:

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

Senior Secondary Course
Learner’s Guide: Computer Science (330)

6

//base class

class Fare

{

 public:

 Fare()

 {

 cout<<"Fare of Vehicle\n";

 }

};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle, public Fare

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Bus obj2;

 return 0;

}

OUTPUT:

This is a Vehicle

Fare of Vehicle

 VIRTUAL BASE CLASS: Virtual base

classes are used in virtual inheritance in a

way of preventing multiple “instances” of

a given class appearing in an inheritance

hierarchy when using multiple

inheritances.

Let’s consider the following situation.

1. When the inheritance is private, the private

methods in base class are __________ in the

derived class (in C++).

A) Inaccessible

B) Accessible

C) Protected

D) Public

2. What is meant by multiple inheritance?

A) Deriving a base class from derived

class

B) Deriving a derived class from base class

C) Deriving a derived class from more than

one base class

D) None of the mentioned

3. Inheritance allow in C++ Program?

A) Class Re-usability

B) Creating a hierarchy of classes

C) Extendibility

D) All of the above

4. Can we pass parameters to base class

constructor though derived class or derived

class constructor?

A) Yes

B) No

C) May Be

D) Can't Say

CHECK YOURSELF

Senior Secondary Course
Learner’s Guide: Computer Science (330)

7

5. In Multipath inheritance, in order to

remove duplicate set of records in child class,

we ___________ .

A) Write Virtual function in parent classes

B) Write virtual functions is base class
C) Make base class as virtual base class

D) All of these

1. Briefly explain about inheritance and

types of inheritance.

2. What are the different accessibility modes

?

3. What do you mean by virtual base class

and what is the use of it?

Answers to Check Yourself:

1. A

2. C

3. D

4. A

5. C

STRETCH YOURSELF

ANSWERS

