MATRICES

In the middle of the 19th Century, Arthur Cayley (1821-1895), an English mathematician created a new discipline of mathematics, called matrices. He used matrices to represent simultaneous system of equations. As of now, theory of matrices has come to stay as an important area of mathematics. The matrices are used in game theory, allocation of expenses, budgeting for by-products etc. Economists use them in social accounting, input-output tables and in the study of inter-industry economics. Matrices are extensively used in solving the simultaneous system of equations. Linear programming has its base in matrix algebra. Matrices have found applications not only in mathematics, but in other subjects like Physics, Chemistry, Engineering, Linear Programming etc.

In this lesson we will discuss different types of matrices and algebraic operations on matrices in details.

OBJECTIVES

After studying this lesson, you will be able to:

- define a matrix, order of a matrix and cite examples thereof;
- define and cite examples of various types of matrices-square, rectangular, unit, zero, diagonal, row, column matrix;
- state the conditions for equality of two matrices;
- define transpose of a matrix;
- define symmetric and skew symmetric matrices and cite examples;
- find the sum and the difference of two matrices of the same order;
- multiply a matrix by a scalar;
- state the condition for multiplication of two matrices; and
- multiply two matrices whenever possible.
- use elementary transformations
- find inverse using elementary trnsformations

EXPECTED BACKGROUND KNOWLEDGE

- Knowledge of number system
- Solution of system of linear equations

MODULE - VI
Algebra -II the second entry, the number of pencils, possessed by Anil.

Let us now consider, the case of two friends Shyam and Irfan. Shyamhas 2 books, 4 notebooks and 2 pens; and Irfan has 3 books, 5 notebooks and 3 pens.

A convenient way of representing this information is in the tabular form as follows:

	Books	Notebooks	Pens
Shyam	2	4	2
Irfan	3	5	3

We can also briefly write this as follows:
First Column Second Column Third Column
First Row
Second Row
\downarrow
4
5
\downarrow

This representation gives the following information:
(1) The entries in the first and second rows represent the number of objects (Books, Notebooks, Pens) possessed by Shyam and Irfan, respectively
(2) The entries in the first, second and third columns represent the number of books, the number of notebooks and the number of pens, respectively.

Thus, the entry in the first row and third column represents the number of pens possessed by Shyam. Each entry in the above display can be interpreted similarly.

The above information can also be represented as

	Shyam	Irfan
Books	2	3
Notebooks	4	5
Pens	2	3

which can be expressed in three rows and two columns as given below:
$\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 3\end{array}\right]$ The arrangement is called a matrix. Usually, we denote a matrix by a capitalletter of
English alphabets, i.e. A, B, X, etc. Thus, to represent the above information in the form of a matrix, we write

$$
\left.A=\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
2 & 3
\end{array}\right] \text { or } \begin{array}{ll}
2 & 3 \\
2 & 5 \\
2 & 3
\end{array}\right\}
$$

Note: Plural of matrix is matrices.
20.1.1 Order of a Matrix Observe the following matrices (arrangement of numbers):
(a)

(b)

(c)

In matrix (a), there are two rows and two columns, this is called a 2 by 2 matrix or a matrix of order 2×2. This is written as 2×2 matrix. In matrix (b), there are three rows and two columns. It is a 3 by 2 matrix or a matrix of order 3×2. It is written as 3×2 matrix. The matrix (c) is a matrix of order 3×4.

Note that there may be any number of rows and any number of columns in a matrix. If there are m rows and n columns in matrix A, its order is $m \times n$ and it is read as an $m \times n$ matrix.

Use of two suffixes i and j helps in locating any particular element of a matrix. In the above $m \times n$ matrix, the element $a_{i j}$ belongs to the i th row and j th column.

$$
A=\left[\begin{array}{llll}
a_{11} a_{12} a_{13} \cdots a_{1 j} & \cdots & a_{1 n} \\
a_{21} a_{22} a_{23} \cdots a_{2 j} & \cdots & a_{2 n} \\
a_{31} a_{32} a_{33} \cdots a_{3 j} & \cdots & a_{3 n} \\
a_{i 1} a_{i 2} a_{i 3} \cdots a_{i j} & \cdots & a_{i n} \\
a_{m 1} a_{m 2} & a_{m 3} & \cdots & a_{m j}
\end{array} \cdots a_{m n} .\right]
$$

A matrix of order $\boldsymbol{m} \times \boldsymbol{n}$ can also be written as

$$
\begin{gathered}
A=\left[a_{i j}\right], i=1,2, \ldots, m ; \text { and } \\
j=1,2, \ldots, n
\end{gathered}
$$

MODULE - VI
Algebra -II

Notes
Solution: The order of the matrix
(i) is 2×2
(ii) is 3×1
(iii) is 1×3
(iv) is 2×3

Example 20.2 For the following matrix

$$
A=\left[\begin{array}{llll}
2 & 0 & 1 & 4 \\
0 & 3 & 2 & 5 \\
3 & 2 & 3 & 6
\end{array}\right]
$$

(i) find the order of A
(ii) write the total number of elements in A
(iii) write the elements a_{23}, a_{32}, a_{14} and a_{34} of A
(iv) express each element 3 in A in the form $a_{i j}$.

Solution: The order of the matrix
(i) Since A has 3 rows and 4 columns, A is of order 3×4.
(ii) number of elements in $A=3 \times 4=12$
(iii) $a_{23}=2 ; a_{32}=2 ; a_{14}=4$ and $a_{34}=6$
(iv) a_{22}, a_{31} and a_{33}

Example 20.3 If the element in the i th row and j th column of a 2×3 matrix A is given by $\frac{i+2 j}{2}$, write the matrix A.

Solution: Here, $a_{i j}=\frac{i+2 j}{2}$ (Given)

$$
\begin{aligned}
& a_{11}=\frac{1+2 \times 1}{2}=\frac{3}{2} ; a_{12}=\frac{1+2 \times 2}{2}=\frac{5}{2} ; a_{13}=\frac{1+2 \times 3}{2}=\frac{7}{2} \\
& a_{21}=\frac{2+2 \times 1}{2}=2 ; a_{22}=\frac{2+2 \times 2}{2}=3 ; a_{23}=\frac{2+2 \times 3}{2}=4
\end{aligned}
$$

Thus,

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]=\left[\begin{array}{lll}
\frac{3}{2} & \frac{5}{2} & \frac{7}{2} \\
2 & 3 & 4
\end{array}\right]
$$

Example 20.4 There are two stores A and B. In store A, there are 120 shirts, 100 trousers and 50 cardigans; and in store B, there are 200 shirts, 150 trousers and 100 cardigans. Express this information in tabular form in two different ways and also in the matrix form.

Solution:

	Tabular Form 1					Matrix Form
Store AStore B	Shirts	Trousers		Cardigans		
	120	100		50		129810050
	200	150		100		200150100
	Tabular Form 2					Matrix Form
	Store A		Store B			120 200
Shirts	120		200			V) 150
Trousers	100		150		\Rightarrow	(150
Cardigans	50		100			50100 '

CHECK YOUR PROGRESS 20.1

1. Marks scored by two students A and B in three tests are given in the adjacent table. Represent this information in the matrix form, in two ways
2. Three firms X, Y and Z supply 40,35 and 25

	Test 1	Test 2	Test 3
A	56	65	71
B	29	37	57

3. In family P, there are 4 men, 6 women and 3 children; and in family Q, there are 4 men, 3 women and 5 children. Express this information in the form of a matrix of order 2×3.
4. How many elements in all are there in a
(a) 2×3 matrix
(b) 3×4 matrix
(c) 4×2 matrix
(d) 6×2 matrix
(e) $a \times b$ matrix
(f) $m \times n$ matrix

MODULE - VI
Algebra -II
5. What are the possible orders of a matrix if it has
(a) 8 elements
(b) 5 elements
(c) 12 elements
(d) 16 elements
6. In the matrix A,

find: (a) number of rows;
(b) number of columns;
(c) the order of the matrix A;
(d) the total number of elements in the matrix A;
(e) $\quad a_{14}, a_{23}, a_{34}, a_{45}$ and a_{33}
7. Construct a 3×3 matrix whose elements in the i th row and j th column is given by
(a) $i-j$
(b) $\frac{i^{2}}{j}$
(c) $\frac{(i+2 j)^{2}}{2}$
(d) $3 j-2 i$
8. Construct a 3×2 matrix whose elements in the i th row and j th column is given by
(a) $i+3 j$
(b) 5.i. j.
(c) i^{j}
(d) $i+j-2$

20.2 TYPES OF MATRICES

Row Matrix : A matrix is said to be a row matrix if it has only one row, but may have any number of columns, egg. the matrix $\left[\begin{array}{lllll}1 & 6 & 0 & 1 & 2\end{array}\right]$ is a row matrix.

T [he order of a row matrix is $1 \times \mathrm{n}$.
Column Matrix : A matrix is said to be a column matrix if it has only one column, but may
have any number of rows, e.g. the matrix

matrix is $m \times 1$
Square Matrix : A matrix is said to be a square matrix if number of rows is equal to the
number of columns, e.g. the matrix

matrix. The order of a square matrix is $n \times n$ or simply n .
The diagonal of a square matrix from the top extreme left element to the bottom extreme right element is said to be the principal diagonal. The principal diagonal of the matrix
H2

Note: In any given matrix $A=\left[a_{i j}\right]$ of order $m \times n$, the elements of the principal diagonal are $a_{11}, a_{22}, a_{33}, \ldots, a_{n n}$

Rectangular Matrix : A matrix is said to be a rectangular matrix if the number of rows is not equal to the number of columns, e.g. the matrix is a rectangular matrix.It may be noted that a row matrix of order $1 \times n(n \neq 1)$ and a column matrix of order $m \times 1(m \neq 1)$ are rectangular matrix.

Zero or Null Matrix : A matrix each of whose element is zero is called a zero or null matrix, e.g. each of the matrix

is a zero matrix. Zero matrix is denoted by O .
Note: A zero matrix may be of any order $m \times n$.
Diagonal Matrix : A square matrix is said to be a diagonal matrix, if all elements other than those occuring in the principal diagonal are zero, i.e., if $A=\left[a_{i j}\right]$ is a square matrix of order m $\times \mathrm{n}$, then it is said to be a diagonal matrix if $a_{i j}=0$ for all $i \neq j$.

MODULE - VI

Algebra -II

Note: A diagonal matrix $A=\left[a_{i j}\right]_{n \times n}$ is also written as $A=\operatorname{diag}\left[a_{11}, a_{12}, a_{13}, \ldots, a_{n n}\right]$

Scalar Matrix : A diagonal matrix is said to be a scalar matrix if all the elements in its principal diagonal are equal to some non-zero constant, say k e.g., the matrix
is a scalar matrix.

Note: A square zero matrix is not a scalar matrix.

Unit or Identity Matrix : A scalar matrix is said to be a unit or identity matrix, if all of its elements in the principal diagonal are unity. It is denoted by I_{n}, if it is of order n e.g., the matrix
 ${ }_{1}^{0}{ }_{0}^{0}$

Note: A square matrix $A=\left[a_{i j}\right]$ is a unit matrix if $a_{i j}=\left\{\begin{array}{l}0, \text { when } i \neq j \\ 1, \text { when } i=j\end{array}\right.$

Equal Matrices : Two matrices are said to be equal if they are of the same order and if their corresponding elements are equal.

If A is a matrix of order $m \times n$ and B is a matrix of order $p \times r$, then $A=B$ if
(1) $m=p ; n=r$; and
(2) $a_{i j}=b_{i j}$ for all 3×2 and $j=1,2,3, \ldots, n$

Two matrices X and Y given below are not equal, since they are of different orders, namely 2×3 and 3×2 respectively.

Also, the two matrices P and Q are not equal, since some elements of P are not equal to the corresponding elements of Q.

$$
P=\left[\begin{array}{ccc}
-1 & 3 & 7 \\
0 & 1 & 2
\end{array}\right], Q=\left[\begin{array}{ccc}
-1 & 3 & 6 \\
0 & 2 & 1
\end{array}\right]
$$

Example 20.5 Find whether the following matrices are equal or not:
(i) $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 6\end{array}\right], B=\left[\begin{array}{ll}2 & 5 \\ 1 & 6\end{array}\right]$
(ii) $P=\left[\begin{array}{lll}0 & 1 & 7 \\ 2 & 3 & 5\end{array}\right], Q=\left[\begin{array}{lll}0 & 1 & 7 \\ 2 & 3 & 5 \\ 0 & 0 & 0\end{array}\right]$
(iii) $X=\left[\begin{array}{lll}2 & 1 & 3 \\ -1 & 0 & 6 \\ 7 & 1 & 0\end{array}\right], Y=\left[\begin{array}{lll}2 & 1 & 3 \\ -1 & 0 & 6 \\ 7 & 1 & 0\end{array}\right]$

Solution:

(i) Matrices A and B are of the same order 2×2. But some of their corresponding elements are different. Hence, $A \neq B$.
(ii) Matrices P and Q are of different orders, So, $P \neq Q$.
(iii) Matrices X and Y are of the same order 3×3, and their corresponding elements are also equal.

So, $X=Y$.
Example 20.6 Determine the values of x and y, if
(i) $\quad\left[\begin{array}{ll}x & 5\end{array}\right]=\left[\begin{array}{ll}2 & 5\end{array}\right]$
(ii) $\quad\left[\begin{array}{l}x \\ 3\end{array}\right]=\left[\begin{array}{l}4 \\ y\end{array}\right]$
(iii) $\left[\begin{array}{cc}x & 2 \\ 3 & -y\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$

Solution: Since the two matrices are equal, their corresponding elements should be equal.
(i)
$x=2$
(ii) $x=4, y=3$
(iii) $x=1, y=-5$

MODULE - VI
Algebra -II

Example 20.7 For what values of a, b, c and d, are the following matrices equal?
(i) $\quad A=\left[\begin{array}{rrr}a & -2 & 2 b \\ 6 & 3 & d\end{array}\right], B=\left[\begin{array}{rrr}1 & -2 & 4 \\ 6 & 5 c & 2\end{array}\right]$
(ii)

Solution:

(i) The given matrices A and B will be equal only if their corresponding elements are equal, i.e. if
$a=1,2 b=4,3=5 c$, and $d=2$
$\Rightarrow a=1, b=2, c=\frac{3}{5}$ and $d=2$
Thus, for $a=1, b=2, c=\frac{3}{5}$ and $d=2$ matrices A and B are equal.
(ii) The given matrices P and Q will be equal if their corresponding elements are equal, i.e. if
$2 b=6, b-2 d=1, a=5$ and $a+c=4$
$\Rightarrow a=5, b=3, c=-1$ and $d=1$

Thus, for $a=5, b=3, c=-1$ and $d=1$, matrices P and Q are equal.

CHECK YOUR PROGRESS 20.2

1. Which of the following matrices are
(a) row matrices (b) column matrices (c) square matrices (d) diagonal matrices
(e) scalar matrices (f) identity matrices and (g) zero matrices

$E=$

2. Find the values of a, b, c and d if
(a) $\left[\begin{array}{cc}b & 2 c \\ b+d & c-2 a\end{array}\right]=\left[\begin{array}{cc}10 & 12 \\ 8 & 2\end{array}\right]$
(b)

(c)

3. Can a matrix of order 1×2 be equal to a matrix of order 2×1 ?
4. Can a matrix of order 2×3 be equal to a matrix of order 3×3 ?

20.3 TRANSPOSE OF A MATRIX

Associated with each given matrix there exists another matrix called its transpose. The transpose of a given matrix A is formed by interchanging its rows and columns and is denoted by A^{\prime} or A^{t}, e.g. if

$$
A=\left[\begin{array}{ccc}
1 & 2 & -3 \\
4 & 0 & 3 \\
7 & 6 & 1
\end{array}\right] \text {, then } A^{\prime}=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 0 & 6 \\
-3 & 3 & 1
\end{array}\right]
$$

In general, If $\boldsymbol{A}=\left[a_{i j}\right]$ is an $m \times n$ matrix, then the transpose A^{\prime} of \boldsymbol{A} is the $\boldsymbol{n} \times \boldsymbol{m}$ matrix; and, $\left(a_{i j}\right)$ th element of $A=\left(a_{i j}\right)$ th element of A^{\prime}

20.3.1 Symmetric Matrix

A square matrix A is said to be a symmetric matrix if $A^{\prime}=A$.
For example,

$$
\text { If } A=\left[\begin{array}{llr}
2 & 3 i & 1-i \\
3 i & 4 & 2 i \\
1-i & 2 i & 5
\end{array}\right] \text {, then } A^{\prime}=\boldsymbol{\mathbf { N } _ { i }} \begin{array}{cc}
3 i & 1-i \\
4 & 2 i \\
2 & 5
\end{array} \mathbf{P}
$$

MODULE - VI
Algebra -II

Since $A^{\prime}=A, A$ is a symmetric matrix.
Note: (1) In a symmetric matrix $A=\left[a_{i j}\right]_{n \times n}$,
$a_{i j}=a_{j i}$ for all i and j
(2) A rectangular matrix can never be symmetric.

20.3.2 Skew-Symmetric Matrix

A square matrix A is said to be a skew symmetric if $A^{\prime}=-A$, i.e. $a_{i j}=-a_{j i}$ for all i and j.
For example,

If $A=\left[\begin{array}{ccc}0 & c & d \\ -c & 0 & f \\ -d & -f & 0\end{array}\right]$, then $A^{\prime}=\left[\begin{array}{rrr}0 & -c & -d \\ c & 0 & -f \\ d & f & 0\end{array}\right]$
But $A^{\prime}=\left[\begin{array}{rrr}0 & -c & -d \\ c & 0 & -f \\ d & f & 0\end{array}\right]$, which is the same as A^{\prime}
$A^{\prime}=-A$
Hence, A is a skew symmetric matrix
Note: In a skew symmetric matrix $A=\left[a_{i j}\right]_{n \times n}, a_{i j}=0$, for $i=j$ i.e. all elements in the principal diagonal of a skew symmetric matrix are zeroes.

20.4 SCALAR MULTIPLICATION OF A MATRIX

Let us consider the following situation:
The marks obtained by three students in English, Hindi, and Mathematics are as follows:

English
Hindi
Mathematics

Elizabeth	20	10	15
Usha	22	25	27
Shabnam	17	25	21

It is also given that these marks are out of 30 in each case. In matrix form, the above information can be written as

Matrices

$\left[\begin{array}{lll}20 & 10 & 15 \\ 22 & 25 & 27 \\ 17 & 25 & 21\end{array}\right]$
(It is understood that rows correspond to the names and columns correspond to the subjects)

If the maximum marks are doubled in each case, then the marks obtained by these girls will also be doubled. In matrix form, the new marks can be given as:

> So, we write that

Now consider another matrix

Let us see what happens, when we multiply the matrix A by 5
i.e. $5 \times A=5 A=5 \times$,

When a matrix is multiplied by a scalar, then each of its element is multiplied by the same scalar.

For example,

MODULE - VI
Algebra -II

Example 20.8 If $A=\left|\begin{array}{lll}-1 & 3 & 4 \\ -1 & 0 & 1\end{array}\right|$,find
(i) 2 A
(ii) $\frac{1}{2} A \quad$ (iii) $\quad-A$
(iv) $\frac{2}{3} \mathrm{~A}$

Solution:

(ii) $\frac{1}{2} A=\frac{1}{2} \times$ 年
(iii) $\quad-A=(-1) \times\left[\begin{array}{lll}-2 & 3 & 4 \\ -1 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}2 & -3 & -4 \\ 1 & 0 & -1\end{array}\right]$
iv) $\frac{2}{3} A=\frac{2}{3} \times$ 年

CHECK YOUR PROGRESS 20.3

1. If $A={\underset{2}{7}}_{2}^{2}$, find:
(a) $4 A$
(b) $\quad-A$
(c) $\frac{1}{2} A$
(d) $-\frac{3}{2} A$
2. \quad If $A=\mid \mathbf{M}_{3}^{-1} \quad 2 \quad 4 \quad$, find:
(a) 5 A
(b) $-3 A$
(c) $\frac{1}{3} A$
(d) $-\frac{1}{2} A$
3. If $A=\left[\begin{array}{cc}-1 & 0 \\ 4 & 2 \\ 0 & -1\end{array}\right]$, find $(-7) A$
4. If $x=\underset{\sim}{2}$
(a) 5 X
(b) -4 X
(c) $\frac{1}{3} \mathrm{X}$
(d) $-\frac{1}{2} \mathrm{X}$
5. Find A^{\prime} (transpose of A):
(a) $\quad A={\underset{4}{2}}_{3}^{-1} \mathbf{P}$
(b) $\quad A=\left|\begin{array}{ll}4 \\ 6 & 10 \\ 8 & 9 \\ \hline\end{array}\right|$
(c) $A=\stackrel{y}{4}$
(d) $\quad A=\underset{\sim}{1} 108$
6. For any matrix A, prove that $\left(A^{\prime}\right)^{\prime}=A$
7. Show that each of the following matrices is a symmetric matrix:
(a) $\left[\begin{array}{cc}2 & -4 \\ -4 & 3\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & -1 & 2 \\ -1 & 2 & -3 \\ 2 & -3 & 4\end{array}\right]$
(c) $\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
8. Show that each of the following matrices is a skew symmetric matrix:
(a) $\quad \boldsymbol{M}_{3}^{-3} \mathbf{0}$
(b) $\left[\begin{array}{ccc}0 & i & 4 \\ -i & 0 & 2-i \\ -4 & -2+i & 0\end{array}\right]$

MODULE - VI
Algebra -II

Notes
Two students A and B compare their performances in two tests in Mathematics, Physics and English. The maximum marks in each test in each subject are 50 . The marks scored by them are as follows:

First Test

	M	P	E		M	P	E
A	55	38	336	A	45	32	30.
B	17	40	36	B	H2	30	39

How can we find their total marks in each subject in the two tests taken together?
Observe that the new matrix giving the combined information of two matrices

If \boldsymbol{A} and B are any two given matrices of the same order, then their sum is defined to be a matrix C whose respective elements are the sum of the corresponding elements of the matrices A and B and we write this as $C=A+B$.

1. The order of the matrix C will also be the same as that of A and B.
2. It is not possible to add two matrices of different orders.

Example 20.9 If 2×2 and $B=\left[\begin{array}{ll}5 & 2 \\ 1 & 0\end{array}\right]$, then find $A+B$.
Solution: \quad Since the given matrices A and B are of the same order, i.e. 2×2, we can add them. So,

$$
A+B=\left\lvert\, \begin{array}{ll}
5 & 3+2 \\
4+1 & 2+0
\end{array} \mathbf{b}\right.
$$

$$
=\left.\left.\right|_{5} ^{6}\right|_{2} ^{5} p
$$

Example 20.10 If $A=\left\lvert\, \begin{array}{lc}\mathbf{M}_{2} & -1 \\ 3 & 0\end{array} \mathbf{P}_{\mathrm{nnd}} B=\left[\begin{array}{lll}3 & 0 & 4 \\ 1 & 2 & 1\end{array}\right]\right.$, then find $A+B$.
Solution: \quad Since the given matrices A and B are of the same order, i.e. 2×2, we can add them. So,

20.5.1 Properties of Addition

Recall that in case of numbers, we have
(i) $x+y=y+x$, i.e., addition is commutative
(ii) $x+(y+z)=(x+y)+z$, i.e., addition is associative
(iii) $x+0=x$, i.e., additive identity exists
(iv) $x+(-x)=0$, i.e., additive inverse exists

Let us now find if these properties hold true in case of matrices too:
Let $\quad A={\underset{1}{1}}_{1}^{1}{ }_{3}^{2} \mathbf{P}_{\text {and }} B=\operatorname{Ma}_{3}^{-2} \boldsymbol{P}_{\text {, Then, }}$
and

$$
\left.B+A=\mathbf{M}_{\mathbf{1}+(-1)}^{\mathbf{M}_{1}^{+1}} \begin{array}{cc}
-2+2+3
\end{array} \mathbf{p} \right\rvert\,{\underset{0}{0}}_{1}^{0}{ }_{6}^{0} \mathbf{P}
$$

We see that $A+B$ and $B+A$ denote the same matrix. Thus, in general,
For any two matrices \boldsymbol{A} and \boldsymbol{B} of the same order, $\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}$

i.e. matrix addition is commutative

MODULE - VI
Algebra -II

$$
\begin{aligned}
& =\left|\begin{array}{cc}
\mathbf{V}_{-2}^{+2} & 3+(-4) \\
1+5
\end{array}\right|=\left[\begin{array}{cc}
2 & -1 \\
0 & 6
\end{array}\right]
\end{aligned}
$$

We see that $A+(B+C)$ and $(A+B)+C$ denote the same matrix. Thus, in general

For any three matrices A, B and C of the same order,

$A+(B+C)=(A+B)+C$ i.e., matrix addition is associative.
Recall that we have talked about zero matrix. A zero matrix is that matrix, all of whose elements are zeroes. It can be of any order.

Let

We see that $A+O$ and $O+A$ denote the same matrix A.
Thus, we find that $A+O=A=O+A$, where O is a zero matrix.
The matrix O, which is a zero matrix, is called the additive identity.
Additive identity is a zero matrix, which when added to a given matrix, gives the same given matrix, i.e., $A+O=A=O+A$.

Example 20.11
find:
(a) $A+B$
(b) $B+C$
(c) $(A+B)+C$
(d) $A+(B+C)$

Solution:

(a)

MODULE - VI
Algebra -II

(c) $\quad(A+B)+C=\left[\begin{array}{cc}-1 & 1 \\ 2 & 5\end{array}\right]+\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]$... [From (a)]

$$
==\left[\begin{array}{cc}
(-1)+(-1) & 1+0 \\
2+0 & 5+3
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
2 & 8
\end{array}\right]
$$

(d)

$$
\begin{aligned}
& =\boldsymbol{q}_{1+1}^{(-4)} \begin{array}{cc}
0+1 \\
3+5
\end{array} \mathbf{-} \underset{2}{\mathbf{N}}{\underset{8}{1}}_{1}^{\mathbf{p}}
\end{aligned}
$$

Example 20.12 If $A=\underset{1}{\mathbf{V}} \begin{array}{ccc}3 & 5 \\ -1 & 0\end{array} \mathbf{R a n d}^{2} O=\left\lvert\, \begin{array}{ll}\mathbf{M}_{0}^{0} & 0 \\ 0 & 0\end{array} \mathbf{P}\right.$

$$
\text { then find (a) } A+O \text { (b) } O+A
$$

What do you observe?

Solution:

$$
\begin{aligned}
& \left.=\mathbf{W} \begin{array}{ccc}
+0 & 3+0 & 5+0 \\
1+0 & -1+0 & 0+0
\end{array} \mathbf{D} \right\rvert\, \begin{array}{ccc}
3 & 5 \\
\mathbf{2} & -1 & 0
\end{array} \mathbf{m}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& O+A=\left|\begin{array}{ll}
\mathbf{M}_{0}^{0} & 0 \\
0 & 0
\end{array} \mathbf{p}\right| \begin{array}{ccc}
-2 & 5 & 5 \\
\mathbf{K} & -1 & 0
\end{array} \mathbf{p} \\
& \left.=\mathbf{M}_{\boldsymbol{0}+1}^{(-2)} \begin{array}{ccc}
0+(-1) & 0+0
\end{array}\right) \left\lvert\, \begin{array}{ccc}
0+5 & 5 \\
-1 & 0
\end{array} \mathbf{p}\right.
\end{aligned}
$$

From (a) and (b), we see that

$$
A+O=O+A=A
$$

20.6 SUBTRACTION OF MATRICES

Let A and B two matrices of the same order. Then the matrix $\mathrm{A}-\mathrm{B}$ is defined as the subtraction of B from A. A-B is obtained by subtracting corresponding elements of B from the corresponding elements of A.

We can write $A-B=A+(-B)$
Note : $A^{-} \boldsymbol{B}$ and $B^{-} \boldsymbol{A}$ do not denote the same matrix, except when $\boldsymbol{A}=\boldsymbol{B}$.
Example 20.13 If $A=A=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $B=\mid \mathbf{M}_{4}^{2} \mathbf{P}$ then find
(a) $A-B$
(b) $B^{-} A$

Solution: (a) We know that

$$
A-B=A+(-B)
$$

Substituting it in (i), we get

$$
\begin{aligned}
& A-B={\underset{2}{2}}_{1}^{M_{-1}} \boldsymbol{P}_{+} \operatorname{Man}_{-4}^{-2} \mathbf{P} \\
& ==\left[\begin{array}{cc}
1+(-3) & 0+(-2) \\
2+(-1) & (-1)+(-4)
\end{array}\right]=\left\lvert\, \begin{array}{cc}
-2 & -2 \\
1 & -5
\end{array} \mathbf{p}\right.
\end{aligned}
$$

(b) Similarly,

$$
\begin{aligned}
& B-A=B+(-A)
\end{aligned}
$$

Remarks : To obtain $A^{-} B$, we can subtract directly the elements of B from the corresponding elements of A. Thus,

$$
A-B=\left|\begin{array}{cc}
\mathbf{V}_{1}^{3} & 0-2 \\
2-1 & -1-4
\end{array} \mathbf{P}\right| \begin{array}{cc}
-2 \\
1 & -5
\end{array} \mathbf{P}
$$

and

$$
B^{-}-A=\left|\begin{array}{|cc}
\mathbf{V}_{2}^{1} & 2-0 \\
4-(-1)
\end{array} \mathbf{P}=\left|\begin{array}{lc}
2 & 2 \\
-1 & 5
\end{array}\right|\right.
$$

Solution : Here, it is given that $\mathrm{A}+\mathrm{B}=\mathrm{O}$

$$
\begin{aligned}
& \therefore \quad\left[\begin{array}{ll}
2 & 3 \\
-1 & 4
\end{array}\right]+{\underset{c}{c}}_{p}^{p} \underset{=}{\boldsymbol{P}}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \Rightarrow \quad\left[\begin{array}{ll}
2+a & 3+b \\
-1+c & 4+d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]= \\
& \Rightarrow \quad 2+a=0 \quad ; \quad 3+b=0 \\
& -1+c=0 \quad ; \quad 4+d=0 \\
& \Rightarrow \quad a=-2 ; \quad b=-3 ; \quad c=1 \text { and } d=-4
\end{aligned}
$$

In general, given a matrix A, there exists another matrix $B=(-1) A$ such that $A+B=O$, then such a matrix B is called the additive inverse of the matrix of A.

CHECK YOUR PROGRESS 20.4

1. If $A=A=\left[\begin{array}{rr}3 & -1 \\ 5 & 2\end{array}\right]$ and $B=B=\left[\begin{array}{ll}0 & -1 \\ 3 & 2\end{array}\right]$ then find :
(a) $A+B$
(b) $2 A+B$
(c) $A+3 B$
(d) $2 A+3 B$
2. If $\mathrm{P}=Q=\left[\begin{array}{lll}1 & 2 & -3 \\ 4 & 1 & -5\end{array}\right]$ and $\mathrm{Q}=\mathbf{M}_{4} \begin{array}{ll}2 & -3 \\ 1 & -5\end{array} \mathbf{P}$, then find :
(a) $\mathrm{P}^{-} \mathrm{Q}$
(b) $\mathrm{Q}^{-\mathrm{P}}$
(c) $\mathrm{P}^{-2 \mathrm{Q}}$
(d) $2 Q^{-} 3 P$

MODULE - VI
Algebra -II
3. If $A=$

-
 $B=\left[\begin{array}{ccc}-1 & -4 & 0 \\ 1 & 6 & 1 \\ 2 & 0 & 7\end{array}\right]$, then find:
(a) $A+B$
(b) $A^{-} B$
(c) $-A+B$
(d) $3 A+2 B$
4. If $A=A=\left[\begin{array}{cc}0 & 1 \\ 0 & -1 \\ -1 & 1\end{array}\right]$, find the zero matrix O satisfying $\mathrm{A}+\mathrm{O}=\mathrm{A}$.
5. If $\mathrm{A}=$
 $\begin{array}{cc}-1 & 0 \\ 2 & 3 \\ 0 & 1\end{array} \boldsymbol{P}^{2}$ fen find :
(a) -A
(b) $\mathrm{A}+(-\mathrm{A})$
(c) $(-\mathrm{A})+\mathrm{A}$
6. If $\mathrm{A}=A=\left[\begin{array}{ll}1 & 9 \\ 3 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}5 & 1 \\ 7 & 9\end{array}\right]$, then find :
(a) 2 A
(b) 3B
(c) $2 \mathrm{~A}+3 \mathrm{~B}$
(d) If $2 \mathrm{~A}+3 \mathrm{~B}+5 \mathrm{X}=0$, what is X ?

(a) A^{\prime}
(b) B^{\prime}
(c) $\mathrm{A}+\mathrm{B}$
(d) $(\mathrm{A}+\mathrm{B})^{\prime}$
(e) $\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$

What do you observe ?

(a) $\mathrm{A}^{-} \mathrm{B}$
(b) $\mathrm{B}^{-} \mathrm{C}$
(c) $\mathrm{A}^{-} \mathrm{C}$
(d) $3 \mathrm{~B}-2 \mathrm{C}$
(e) $\mathrm{A}^{-} \mathrm{B}-\mathrm{C}$
(f) $2 \mathrm{~A}-\mathrm{B}-3 \mathrm{C}$

20.7 MULTIPLICATION OF MATRICES

Salina and Raki are two friends. Salina wants to buy 17 kg wheat, 3 kg pulses and 250 gm ghee; while Rakhi wants to buy 15 kg wheat, 2 kg pulses and 500 gm ghee. The prices of wheat, pulses and ghee per kg respectively are Rs. 8.00 , Rs. 27.00 and Rs. 90.00 .How much money will each spend? Clearly, the money needed by Salina and Rakhi will be :
Salina
Cost of 17 kg wheat $\Rightarrow 17 \times$ Rs. $8 \quad=$ Rs. 136.00
Cost of 3 kg pulses $\Rightarrow 3 \times$ Rs. $27 \quad=$ Rs. 81.00
Cost of 250 gm ghee $\Rightarrow \frac{1}{4} \times$ Rs. $90 \quad=$ Rs. 22.50
Total = Rs. 239.50

Rakhi
Cost of 15 kg wheat $\Rightarrow 15 \times$ Rs. $8 \quad=$ Rs. 120.00
Cost of 2 kg pulses $\Rightarrow 2 \times$ Rs. $27=$ Rs. 54.00
Cost of 500 gm ghee $\Rightarrow \frac{1}{2} \times$ Rs. $90=$ Rs. 45.00
Total = Rs. 219.00
In matrix form, the above information can be represented as follows:
Requirements Price Money Needed

Another shop in the same locality quotes the following prices.
Wheat : Rs. 9 per kg.; pulses : Rs. 26 per kg; ghee : Rs. 100 per kg.
The money needed by Salina and Rakhi to buy the required quantity of articles from this shop will be
Salina

$$
\begin{aligned}
17 \mathrm{~kg} \text { wheat } \Rightarrow 17 \times \text { Rs. } 9 & =\text { Rs. } 153.00 \\
3 \mathrm{~kg} \text { pulses } \Rightarrow 3 \times \text { Rs. } 26 & =\text { Rs. } 78.00 \\
250 \text { gm ghee } \Rightarrow \frac{1}{4} \times \text { Rs. } 100 & =\text { Rs. } 25.00 \\
\text { Total } & =\text { Rs. } 256.00
\end{aligned}
$$

Rakhi

$$
\begin{aligned}
15 \mathrm{~kg} \text { wheat } \Rightarrow 15 \times \text { Rs. } 9 & =\text { Rs. } 135.00 \\
2 \mathrm{~kg} \text { pulses } \Rightarrow 2 \times \text { Rs. } 26 & =\text { Rs. } 52.00 \\
500 \text { gm ghee } \Rightarrow \frac{1}{2} \times \text { Rs. } 100 & =\text { Rs. } 50.00 \\
\text { Total } & =\text { Rs. } 237.00
\end{aligned}
$$

In matrix form, the above information can be written as follows :
Requirements Price Money needed

To have a comparative study, the two information can be combined in the following way:

MODULE - VI
Algebra -II

Let us see how and when we write this product :
i) The three elements of first row of the first matrix are multiplied respectively by the corresponding elements of the first column of the second matrix and added to give element of the first row and the first column of the product matrix. In the same way, the product of the elements of the second row of the first matrix to the corresponding elements of the first column of the second matrix on being added gives the element of the second row and the first column of the product matrix; and so on.
ii) The number of column of the first matrix is equal to the number of rows of the second matrix so that the first matrix is compatible for multiplication with the second matrix.

Thus, If $A=$

$c_{c_{1}} \quad \mathbf{B}$ nd $B=$

β_{1}	
β_{2}	
β_{3}	$\underset{\sim}{\boldsymbol{p}}$

$$
\begin{aligned}
& =\left\lvert\, \begin{array}{ll}
a^{a} \boldsymbol{a}_{1}+b_{1} \alpha_{2}+c_{1} \alpha_{3} & a_{1} \beta_{1}+b_{1} \beta_{2}+c_{1} \beta_{3} \\
a_{2} \alpha_{1}+b_{2} \alpha_{2}+c_{2} \alpha_{3} & a_{2} \beta_{1}+b_{2} \beta_{2}+c_{2} \beta_{3}
\end{array}\right.
\end{aligned}
$$

Definition : If A and B are two matrices of order $m \times p$ and $p \times n$ respectively, then their product will be a matrix C of order $m \times n$; and if $a_{\mathrm{ij}}, b_{\mathrm{ij}}$ and c_{ij} are the elements of the ith row and jth column of the matrices A, B and C respectively, then

$$
\mathrm{c}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{p}} a_{\mathrm{ik}} b_{\mathrm{kj}}
$$

Example 20.15 If $A=\left[\begin{array}{lll}1 & -1 & 2\end{array}\right]$ and $B=$
(a) $A B$
(b) $B A$
Is $A B=B A$?

Solution : \quad Order of A is 1×3
Order of B is 3×1
$\therefore \quad$ Number of columns of $A=$ Number of rows of B
$\therefore \quad A B$ exists

Now, $A B$

$$
=\left[\begin{array}{ll}
1 & -1
\end{array}\right.
$$

$$
=[1 \times(-2)+(-1) \times 0+2 \times 2]=[-2+0+4]=[2]
$$

Thus, $A B=[2]$, a matix of order 1×1
Again, number of columns of $B=$ number of rows of A.
$\therefore \quad B A$ exists
Now,
MODULE - VI
Algebra -II

$B A=\frac{2}{2}$

$=$

Thus, $B A$

From the above, we find that $A B \neq B A$
Example 20.16 Find AB and BA, if possible for the matrices A and B:

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] ; \quad \mathrm{B}=\frac{2}{2}
$$

Solution : Here, Number of columns of $A \neq$ Number of rows of B $\therefore \mathrm{AB}$ does not exist.

Further, Number of columns of $B \neq$ Number of rows of A
\therefore BA does not exist.

Example 20.17 If $\mathrm{A}=\bigvee_{-1}^{1}{ }_{0}^{2} \boldsymbol{P}_{\text {and }} \mathrm{B}=\left[\begin{array}{ll}2 & 1 \\ 2 & 2\end{array}\right]$, then find AB and BA . Also find if $\mathrm{AB}=\mathrm{BA}$.
Solution : Here, Number of columns of A= Number of rows of B $\therefore \mathrm{AB}$ exists.

Further,Number of columns of B = Number of rows of A
\therefore BA also exists.

MODULE - VI
Algebra -II

$$
\begin{aligned}
& \text { Now, } A B=\left.{\underset{-1}{1}}_{1}^{2}{\underset{0}{2}}_{2}^{2}\right|_{2} ^{1} \mathbf{D} \\
& =\left\lvert\, \begin{array}{lc}
1 / 2 \\
-1 \times 2+2 \times 2 & 1 \times 1+2 \times 2 \\
\mathbf{2} & -1 \times 1+0 \times 2
\end{array} \mathbf{D}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } B A=\left[\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right] \underset{-1}{1}{ }_{0}^{2} \mathbf{D} \\
& =\left\lvert\, \begin{array}{ll}
\mathbf{R}^{2} \\
2 \times 1+2 \times(-1) & 2 \times 2+1 \times 0 \\
1+(-1) & 2 \times 2+2 \times 0
\end{array} \mathbf{D}\right. \\
& =\left\lvert\, \begin{array}{ll}
2 \\
2 & -2 \\
-1 & 4+0
\end{array} \mathbf{4}=\mathbf{4} \quad 4 \sum_{2 \times 2}^{\infty}\right.
\end{aligned}
$$

Thus, $A B \neq B A$
Remarks : We observe that $A B$ and $B A$ are of the same order 2×2, but still $A B \neq B A$.

Solution : Here, both A and B are of order 2×2. So, both $A B$ and $B A$ exist. Now

$$
\begin{aligned}
& A B=
\end{aligned}
$$

Here, both $A B$ and $B A$ are of the same order and $A B=B A$.
Hence, if two matrcies A and B are multiplied, then the following five cases arise:
(i) Both $A B$ and $B A$ exist, but are of different orders
(ii) Only one of the products $A B$ or $B A$ exists.
(iii) Neither $A B$ nor $B A$ exist.
(iv) Both $A B$ and $B A$ exist and are of the same order, but $A B \neq B A$.
(v) Both $A B$ and $B A$ exist and are of the same order. Also, $A B=B A$.

Example 20.19 If $A=A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ and $I=\mid \bigvee_{0}^{0} \underbrace{0}_{1} \boldsymbol{P}_{\text {verify that } A^{2}-2 A-3 I=0}$
Solution: Here,

$$
A^{2}-2 A-3 I=-\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right]-\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right]-{\underset{\mathbf{M}}{3}}_{3}^{0} \mathbf{P}
$$

$$
=\left\lvert\, \begin{aligned}
& 9 \\
& 0
\end{aligned}{ }_{9}^{0} \mathbf{P}-\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right]\right.
$$

Hence, verified.
Example 20.20 Solve the matrix equation:

Solution : Here,

Solving these equations, we get
$\mathrm{x}=2$ and $\mathrm{y}=1$

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{x}-3 \mathrm{y}=1 ; \mathrm{x}+\mathrm{y}=3
\end{aligned}
$$

$$
\begin{aligned}
& 2 A=2\left|{\underset{0}{0}}_{3}^{0}{ }_{3}^{\mathbf{P}}=\left|\left.\right|_{0} ^{6}\right|_{6}^{0} \mathbf{P}\right. \\
& \text { and } \quad 3 I=\left.3\right|_{0} ^{M}{ }_{1}^{0} \underset{\sim}{\operatorname{P}}{\underset{0}{3}}_{0}^{0} \mathbf{P}
\end{aligned}
$$

Soution: Here,

Hence, we conclude that the product of two non-zero matrices can be a zero matrix, whereas in numbers, the product of two non-zero numbers is always non-zero.

$\begin{array}{ll}\text { (a) }(A B) C & \text { (b) } A(B C)\end{array}$
Is $(A B) C=A(B C)$?

Solution :
(a) $\quad(A B) C=\underbrace{2}_{3}$

$$
=\left\lvert\, \begin{array}{ll}
\mathbf{W}+0 & 0-12 \\
-7+0 & 0+30
\end{array} \mathbf{W}=\underset{\mathbf{- 7}}{ } \begin{gathered}
-12 \\
30
\end{gathered} \mathbf{P}\right.
$$

(b) $\quad A(B C)$

$$
\begin{aligned}
& \left.=\left[\begin{array}{ll}
-1+1 & 1-1 \\
-1+1 & 1-1
\end{array}\right] \right\rvert\,{\underset{0}{0}}_{\mathbf{M}}^{0} \mathbf{0}_{0}^{\boldsymbol{P}}=0
\end{aligned}
$$

$$
\begin{aligned}
& ={\underset{3}{4}}_{M_{5}^{-2}}^{-2} \underset{1}{ }{ }_{6}^{0} \mathbf{P}
\end{aligned}
$$

From (a) and (b), we find that $(A B) C=A(B C)$, i.e., matrix multiplication is associative.
CHECK YOUR PROGRESS 20.5

1. If $A=\left[\begin{array}{lll}2 & 3 & 0\end{array}\right]$ and $B=$ 五 $A B$ and $B A$. Is $A B=B A$?
2. If $A=B=\left[\begin{array}{ccc}2 & -3 & 1 \\ 1 & 0 & 3 \\ 1 & 2 & 3\end{array}\right]$ and $B=\sim_{2}^{2}$
3. If $A=\int_{b}^{8}$ and $B=\left[\begin{array}{lll}x & y & z\end{array}\right]$, find $A B$ and $B A$, whichever exists.

4. If $A={\underset{0}{2}}_{2}^{3}$ and $B=$
(a) Does AB exist? Why?
(b) Does BA exist? Why?

MODULE - VI
Algebra -II

7. If $\mathrm{A}=$

find AB and BA . Is $\mathrm{AB}=\mathrm{BA}$?

9. Find the values of x and y if
(a)

(b)

10. For $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 3 & 4\end{array}\right]$, verify that $\mathrm{AB}=\mathrm{O}$
11. For $\mathrm{A}={\underset{1}{2}}_{2}^{5} \mathbf{P}_{3}^{2}$, verify that $\mathrm{A}^{2}-5 \mathrm{~A}+\mathrm{I}=\mathrm{O}$, where I is a unit matrix of order 2 .
12. If $\mathrm{A}=A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right], \mathrm{B}=B=\left[\begin{array}{ll}2 & 2 \\ -1 & 1\end{array}\right]$, and $\mathrm{C}==\left[\begin{array}{cr}4 & -3 \\ -2 & 3\end{array}\right]$, find :
(a) $\mathrm{A}(\mathrm{BC})$
(b) $(\mathrm{AB}) \mathrm{C}$
(c) $(\mathrm{A}+\mathrm{B}) \mathrm{C}$
(d) $\mathrm{AC}+\mathrm{BC}$
(e) $\mathrm{A}^{2}-\mathrm{B}^{2}$
(f) $(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B})$
13. If $\mathrm{A}=A=\left[\begin{array}{rr}2 & -1 \\ 3 & 1\end{array}\right], \mathrm{B}=A=\left[\begin{array}{rr}-1 & 0 \\ 1 & -2\end{array}\right]$ and $\mathrm{C}=C=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$, find : (a) AC (b) BC Is $\mathrm{AC}=\mathrm{BC}$? What do you conclude?
14. If $\mathrm{A}=$

(a) $\mathrm{B}+\mathrm{C}$
(b) $\mathrm{A}(\mathrm{B}+\mathrm{C})$
(c) AB
(d) AC
(e) $\mathrm{AB}+\mathrm{AC}$

What do you observe?
15. For matices $A={\underset{3}{2}}_{2}^{-1} P_{4}$ and $B=\left\lvert\, \begin{array}{cc}2 & -3 \\ -1 & P_{0}\end{array}\right.$, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$
16. If $A={\underset{2}{2}}_{2}^{2} P_{\text {and } B}=\underbrace{3}_{3} P_{\text {find }} X$ such that $A X=B$.

$18 \quad$ If $A={\underset{2}{2}}_{1}^{1} \mathbf{P}_{1}$ and $B={\underset{1}{2}}_{1}^{1} \mathbf{P}_{1}$, is it true that
(a) $(A+B)^{2}=A^{2}+B^{2}+2 A B$?
(b) $(\mathrm{A}-\mathrm{B})^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB}$?
(c) $(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B})=\mathrm{A}^{2}-\mathrm{B}^{2}$?

20.8 INVERTIBLE MATRICES

Definition : A square matrix of order n is invertible if there exists a square matrix B of the same order such that
$\mathrm{AB}=I_{n}=\mathrm{BA}$, Where I_{n} is identify matrix of order n.
In such a case, we say that the inverse of A is B and we write, $\mathrm{A}^{-1}=\mathrm{B}$.
Theorem 1 : Every invertible matrix possesses a unique inverse.
Proof : Let A be an invertible matrix of order
Let B and C be two inverses of A .
Then,
and $\quad \mathrm{AC}=\mathrm{CA}=\mathrm{I}_{n}$
Now,
$\mathrm{AB}=\mathrm{I}_{n}$
$\Rightarrow \quad \mathrm{C}(\mathrm{AB})=\mathrm{C}_{n} \quad[$ Pre-multiplying by C$]$
$\Rightarrow \quad(\mathrm{CA}) \mathrm{B}=\mathrm{C}_{n} \quad$ [by associativity]
$\Rightarrow \quad$ In B $=$ C I $_{n} \quad\left(\because \mathrm{CA}=\mathrm{I}_{n}\right.$ from (ii) $]$
$\Rightarrow \quad \mathrm{B}=\mathrm{C} \quad\left[\because\right.$ In $\left.\mathrm{B}=\mathrm{B}, \mathrm{C}_{n}=\mathrm{C}\right]$
Hence, an invertible matrix possesses a unique inverse.
CORROLLARY If \mathbf{A} is an invertible matrix then $\left(\mathbf{A}^{-1}\right)^{-\mathbf{1}}=\mathbf{A}$
Proof: We have, \quad A $\mathrm{A}^{-1}=\mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}$
$\Rightarrow \quad A$ is the inverse of A^{-1} i.e., $A=\left(A^{-1}\right)^{-1}$

MODULE - VI
Algebra -II

Theorem 2 : A square matrix is invertible iff it is non-singular.
Proof : Let A be an invertible matrix. Then, there exists a matrix B such that

$$
\mathrm{AB}=I_{n}=\mathrm{BA}
$$

$\Rightarrow \quad|\mathrm{AB}|=\left|\mathrm{I}_{n}\right|$
$\Rightarrow \quad|\mathrm{A}||\mathrm{B}|=1$
$[\because|\mathrm{AB}|=|\mathrm{A}||\mathrm{B}|]$
$\Rightarrow \quad|A| \neq 0$
$\Rightarrow \mathrm{A}$ is a non-singular matrix.
Conversely, let A be a non-singular square matrix of order n, then,
$\Rightarrow \mathrm{A}\left(\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}\right)=\mathrm{I}_{n}=\left(\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}\right) \mathrm{A}\left[\because|\mathrm{A}| \neq 0 \therefore \frac{1}{|\mathrm{~A}|}\right.$ exists $]$
$\Rightarrow \quad \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A} \quad$ [By def. of inverse]
Hence, A is an invertible matrix.
Remark : This theorem provides us a formula for finding the inverse of a non-singular square matrix.

The inverse of A is given by

$$
\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}
$$

20.9 ELEMENTARY TRANSFORMATIONS OR ELEMENTARY OPERATIONS OF A MATRIX

The following three operations applied on the rows (columns) of a matrix are called elementary row (column) transformations.
(i) Interchange of any two rows (columns)

If $i^{\text {th }}$ row (column) of a matrix is interchanged with the jth row (column), it is dennoted by $\mathrm{R}_{i} \leftrightarrow \mathrm{R}_{j}$ or ($\mathrm{C}_{i} \leftrightarrow \mathrm{C}_{j}$).

$$
\begin{array}{ll}
\text { for example, } & A=\left[\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 2 & 1 \\
3 & 2 & 4
\end{array}\right] \text {, then by applying } R_{2} \leftrightarrow R_{3} \\
\text { we get } & B=\left[\begin{array}{rrr}
2 & 1 & 3 \\
3 & 2 & 4 \\
-1 & 2 & 1
\end{array}\right]
\end{array}
$$

(ii) Multiplying all elements of any row (column) of a matrix by a non-zero scalar

If the elements of ith row (column) are multiplied by a non-zero scalar k , it is denoted by $\mathrm{R}_{i} \rightarrow \mathrm{k} \mathrm{R}_{i}\left[\mathrm{C}_{i} \rightarrow \mathrm{k} \mathrm{C}_{i}\right]$

For example
If $A=\left[\begin{array}{rrr}3 & 2 & -1 \\ 0 & 1 & 2 \\ -1 & 2 & -3\end{array}\right]$, then by applying $R_{1} \rightarrow 2 R_{1}$ we get $B=\left[\begin{array}{ccc}6 & 4 & -2 \\ 0 & 1 & 2 \\ -1 & 2 & -3\end{array}\right]$
(iii) Adding to the elements of a row (column), the corresponding elements of any other row (column) multiplied by any scalar k
If k times the elements of jth row (column) are added to the corresponding elements of the ith row (column), it is denoted by $\mathrm{R}_{i} \rightarrow \mathrm{R}_{i}+\mathrm{kR}\left(\mathrm{C}_{i} \rightarrow \mathrm{C}_{i}+k \mathrm{C}_{j}\right)$.

If $A=\left[\begin{array}{rrrr}2 & 1 & 3 & 1 \\ -1 & -1 & 0 & 2 \\ 0 & 1 & 3 & 1\end{array}\right]$, then the application of elementary operation

$$
\mathbf{B}=\left[\begin{array}{rrrr}
2 & 1 & 3 & 1 \\
-1 & -1 & 0 & 2 \\
4 & 3 & 9 & 3
\end{array}\right]
$$

20.9.1 INVERSE OF A MATRIX BY ELEMENTARY OPERATIONS

We can find the inverse of a matrix, if it exists, by using either elementary row operations or column operations but not both simultaneously.

Let A be an invertible square matrix of order n, if we want to find A^{-1} by using elementary raw operations then we write

$$
\begin{equation*}
\mathrm{A}=\mathrm{I}_{n} \mathrm{~A} \tag{i}
\end{equation*}
$$

As an elementary row operation on the product of two matrices can be affected by subjecting the pre factor to the same elementary row operation, we shall use elementary row operations on (i) so that its L.H.S reduces to In and R.H.S (after applying corresponding elementary row operations on the prefactor I_{n}), we get

$$
\begin{equation*}
\mathrm{I}_{n}=\mathrm{BA} \tag{ii}
\end{equation*}
$$

Which means matrix B and matrix A are inverse of each other i.e. $\mathrm{A}^{-1}=\mathrm{B}$ Similarly if we want to find A^{-1} by using elementary column operations, we write

$$
\begin{equation*}
\mathrm{A}=\mathrm{A} \mathrm{I}_{n} \tag{iii}
\end{equation*}
$$

Now use elementary column operations on (iii) so that its L.H.S reduces to I_{n} and R.H.S (after applying corresponding elementary column operations on the post factor I_{n}) takes the shape

$$
\begin{aligned}
& \mathrm{I}_{n}=\mathrm{AB} \\
\text { Then } & \mathrm{A}^{-1}=\mathrm{B}
\end{aligned}
$$

The method is explained below with the help of some examples.
Example 20.23 Find the inverse of matrix A, using elementary column operations where,

$$
A=\left[\begin{array}{ll}
2 & -6 \\
1 & -2
\end{array}\right]
$$

Solution : Writing

$$
\begin{aligned}
& A=A I_{2} \Rightarrow\left[\begin{array}{ll}
2 & -6 \\
1 & -2
\end{array}\right]=\mathrm{A}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]=\mathrm{A}\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
\frac{1}{2} & 1
\end{array}\right]=\mathrm{A}\left[\begin{array}{ll}
\frac{1}{2} & 3 \\
0 & 1
\end{array}\right] \text { Operating } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+3 \mathrm{C}_{1} \\
& \Rightarrow \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{A}\left[\begin{array}{rr}
-1 & 3 \\
-\frac{1}{2} & 1
\end{array}\right] \text { Operating } \mathrm{C}_{1} \rightarrow \frac{1}{2} \mathrm{C}_{1} \\
& \Rightarrow \quad \mathrm{I}_{2}=\mathrm{AB}, \text { where } \mathrm{B}=\left[\begin{array}{rr}
-1 & 3 \\
-\frac{1}{2} & 1
\end{array}\right] \text { Operating } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\frac{1}{2} \mathrm{C}_{2} \\
& \text { Hence A }{ }^{-1}=\left[\begin{array}{rr}
-1 & 3 \\
-\frac{1}{2} & 1
\end{array}\right]
\end{aligned}
$$

Example 20.24 Find the inverse of the matrix A using elementary row operations, where

$$
A=\left[\begin{array}{rr}
10 & -2 \\
-5 & 1
\end{array}\right]
$$

Solution : Writing

$$
\begin{aligned}
& \mathrm{A}=\mathrm{I}_{2} \mathrm{~A} \\
\Rightarrow & {\left[\begin{array}{rr}
10 & -2 \\
-5 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right] \mathrm{A} } \\
\Rightarrow & {\left[\begin{array}{rr}
1 & -\frac{1}{5} \\
-5 & 1
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{10} & 0 \\
0 & 1
\end{array}\right] \mathrm{A} \text { Operating } \mathrm{R}_{1} \rightarrow \frac{1}{10} \mathrm{R}_{1} } \\
\Rightarrow & {\left[\begin{array}{rr}
1 & -\frac{1}{5} \\
0 & 0
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{10} & 0 \\
\frac{1}{2} & 1
\end{array}\right] \mathrm{A} \text { Operating } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+5 \mathrm{R}_{1}, }
\end{aligned}
$$

As the matrix in L.H.S contain, a row in which all elements are 0 . So inverse of this matrix does not exist. Because in such case the matrix in L.H.S can not be conversed into a unit matrix.
Example 20.25 Find the inverse of the matrix A, where

$$
A=\left[\begin{array}{rrr}
3 & -1 & -2 \\
2 & 0 & -1 \\
3 & -5 & 0
\end{array}\right]
$$

Solution : We have

$$
\begin{aligned}
& \text { A }=\mathrm{I} A \\
& \text { or }\left[\begin{array}{rrr}
3 & -1 & -2 \\
2 & 0 & -1 \\
3 & -5 & 0
\end{array}\right]=\left[\begin{array}{lrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A} \\
& \Rightarrow\left[\begin{array}{rrr}
1 & -1 & -1 \\
2 & 0 & -1 \\
3 & -5 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A} \text { Operating } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}, \\
& \Rightarrow\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 2 & 1 \\
0 & -2 & 3
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-2 & 3 & 0 \\
-3 & 3 & 1
\end{array}\right] \mathrm{A} \text { Operating } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1},
\end{aligned}
$$

MODULE - VI

Algebra -II
$\Rightarrow\left[\begin{array}{rrr}1 & -1 & -1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 8 & 3\end{array}\right]=\left[\begin{array}{rrr}1 & -1 & 0 \\ -1 & 3 / 2 & 0 \\ -3 & 3 & 1\end{array}\right]$ A Operating $R_{2} \rightarrow \frac{1}{2} R_{2}$
Notes
$\Rightarrow\left[\begin{array}{rrr}1 & 0 & -\frac{1}{2} \\ 0 & 1 & 1 / 2 \\ 0 & 0 & 4\end{array}\right]=\left[\begin{array}{rrr}0 & 1 / 2 & 0 \\ -1 & 3 / 2 & 0 \\ -5 & 6 & 1\end{array}\right] A$ Operating $R_{1} \rightarrow R_{1}+R_{2}, R_{3} \rightarrow R_{3}+2 R_{2}$
$\Rightarrow\left[\begin{array}{rrr}1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 1 / 2 & 0 \\ -1 & 3 / 2 & 0 \\ \frac{-5}{4} & \frac{3}{2} & \frac{1}{4}\end{array}\right]$ A Operating $R_{3} \rightarrow \frac{1}{4} R_{3}$
$\Rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-5 / 8 & 5 / 4 & 1 / 8 \\ -3 / 8 & 3 / 4 & -1 / 8 \\ -5 / 4 & 3 / 2 & 1 / 4\end{array}\right]$ A Operating $R_{1} \rightarrow R_{1}+\frac{1}{2} R_{3}, R_{2} \rightarrow R_{2}-\frac{1}{2} R_{3}$

Hence $\mathrm{A}^{-1}=\left[\begin{array}{rrr}-5 / 8 & 5 / 4 & 1 / 8 \\ -3 / 8 & 3 / 4 & -1 / 8 \\ -5 / 4 & 3 / 2 & 1 / 4\end{array}\right]$

CHIECK YOUR PROGESS 20.6

1. Find inverse of the following matrices using elementary operations :
(a) $\left[\begin{array}{rr}7 & 1 \\ 4 & -3\end{array}\right]$
(b) $\left[\begin{array}{rr}1 & 6 \\ -3 & 5\end{array}\right]$
(c) $\left[\begin{array}{rr}5 & 10 \\ 3 & 6\end{array}\right]$
(d) $\left[\begin{array}{rrr}1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0\end{array}\right]$
(e) $\left[\begin{array}{rrr}3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{array}\right]$

Algebra -II

LET US SUM UP

- A rectangular array of numbers, arranged in the form of rows and columns is called a matrix. Each number is called an element of the matrix.
- The order of a matrix having ' m ' rows and ' n ' columns is $m \times n$.
- If the number of rows is equal to the number of columns in a matrix, it is called a square matrix.
- A diagonal matrix is a square matrix in which all the elements, except those on the diagonal, are zeroes.
- A unit matrix of any order is a diagonal matrix of that order whose all the diagonal elements are 1.
- Zero matrix is a matrix whose all the elements are zeroes.
- Two matrices are said to be equal if they are of the same order and their corresponding elements are equal.
- A transpose of a matrix is obtained by interchanging its rows and columns.
- Matrix A is said to be symmetric if $\mathrm{A}^{\prime}=\mathrm{A}$ and skew symmetric if $\mathrm{A}^{\prime}=-\mathrm{A}$.
- Scalar multiple of a matrix is obtained by multiplying each elements of the matrix by the scalar.
- The sum of two matrices (of the same order) is a matrix obtained by adding corresponding elements of the given matrices.
- Difference of two matrices A and B is nothing but the sum of matrix A and the negative of matrix B.
- \quad Product of two matrices A of order $m \times n$ and B of order $n \times p$ is a matrix of order $m \times p$, whose elements can be obtained by multiplying the rows of A with the columns of B element wise and then taking their sum.
- Product of a matrix and its inverse is equal to identity matrix of same order.
- Inverse of a matrix is always unique.
- All matrices are not necessarily invertible.
- Three points are collinear if the area of the triangle formed by these three points is zero.

SUPPORTIVE WEB SITES
http://www.youtube.com/watch?v=xZBbfLLfVV4
http://www.youtube.com/watch?v=ArcrdMkEmKo
http://www.youtube.com/watch?v=S4n-tQZnU6o
http://www.youtube.com/watch?v=obts_JDS6_Q
http://www.youtube.com/watch?v=01c12NaUQDw
http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=sys

TERMINAL EXERCISE

1. How many elements are there in a matrix of order
(a) 2×1
(b) 3×2
(c) 3×3
(d) 3×4
2. Construct a matrix of order 3×2 whose elements a_{ij} are given by
(a) $a_{i j}=i-2 j$
(b) $\mathrm{a}_{\mathrm{ij}}=3 \mathrm{i}-\mathrm{j}$
(c) $a_{i j}=i+\frac{3}{2} j$
3. What is the order of the matrix?
(a)

(b) $\quad \mathrm{B}=\left[\begin{array}{lll}2 & 3 & 5\end{array}\right]$
(c)

(d)

4. Find the value of x, y and z if
(a) $\quad\left[\begin{array}{ll}x & y \\ z & 2\end{array}\right]=\boldsymbol{M}_{3}^{2} \boldsymbol{P}$

(c)

(d)

5. If $A=\boldsymbol{M}_{4}^{-2} \mathbf{D}_{2}^{-2}$ and $B=\left|\begin{array}{|c}2 \\ -1\end{array}\right|$
(a) $\mathrm{A}+\mathrm{B}$
(b) 2 A
(c) $2 \mathrm{~A}^{-} \mathrm{B}$
6. Find X, if
(a) $\quad \underset{-3}{4}{ }_{6}^{5} \underset{6}{5} \mathbf{B}+X=\left|\begin{array}{cc}M & -2 \\ 4\end{array}\right|$
(b)
7. Find the values of a and b so that

$$
\left.\boldsymbol{M}_{1}^{3} \begin{array}{cc}
-2 & 2 \\
0 & -1
\end{array} \right\rvert\,
$$

8. For matrices A, B and C

verify that $A+(B+C)=(A+B)+C$
9. If $A=\left[\begin{array}{rrr}-1 & 1 & 2 \\ 2 & 3 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 3 \\ 2 & 4 \\ 6 & 5\end{array}\right]$, find $A B$ and $B A . I s A B=B A$?
10. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}0 & -2 \\ 0 & 1\end{array}\right]$, find $A B$ and $B A$. Is $A B=B A$?
11. If $A=\left[\begin{array}{rrr}1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4\end{array}\right]$, find A^{2}.
12. Find $A(B+C)$, if

$$
A=\left[\begin{array}{rr}
1 & 2 \\
3 & -1
\end{array}\right], B=\left\lvert\, \begin{array}{cc}
3 \\
0 & -1 \\
1 & 2
\end{array} \mathbf{a}\right. \text { and } C=\left\lvert\, \begin{array}{ccc}
\mathbf{2} & 0 & 3 \\
4 & 0 & -3
\end{array} \mathbf{D}\right.
$$

14. Show that $A=\left|\begin{array}{ll}5 & 5 \\ 2\end{array}\right|$ satisfies the matrix equation $A^{2}+4 A-2 I=0$.

Find inverse of the following matrices using elementary transformations.
15. $\quad\left[\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right]$
16. $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$
17. $\quad\left[\begin{array}{rr}3 & 10 \\ 2 & 7\end{array}\right]$
18. $\left[\begin{array}{rr}-3 & 5 \\ 2 & 4\end{array}\right]$
19. $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
20. $\left[\begin{array}{cc}\cos x & \sin x \\ \sin x & \cos x\end{array}\right]$
21. $\left[\begin{array}{rr}1 & \tan \frac{x}{2} \\ -\tan \frac{x}{2} & 1\end{array}\right]$
22. $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
23. $\left[\begin{array}{lll}2 & 0 & 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
24. $\left[\begin{array}{lll}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$

CHECK YOUR PROGRESS 20.1

1.

2. $\quad \underset{10}{40} \begin{gathered}35 \\ 10\end{gathered}$

3. ${\underset{4}{4}}_{4}^{4} \begin{array}{ll}6 & 3 \\ 3 & 5\end{array}$
4.
(a) 6
(b) 12
(c) 8
(d) 12
(e) $a b$
(f) $m n$
5.
(a) $1 \times 8 ; 2 \times 4 ; 4 \times 2 ; 8 \times 1$
(b) $1 \times 5 ; 5 \times 1$
(c) $1 \times 12 ; 2 \times 6 ; 3 \times 4 ; 4 \times 3 ; 6 \times 2 ; 12 \times 1$
(d) $1 \times 16 ; 2 \times 8 ; 4 \times 4 ; 8 \times 2 ; 16 \times 1$
6.
(a) 4
(b) 5
(c) 4×5
(d) 20
(e) $a_{14}=0 ; a_{23}=7 ; a_{34}=-3 ; a_{45}=1$ and $a_{33}=3$
7.
(a)
(2)
(d)

8.
(a)

(b)

(d)

CHECK YOUR PROGRESS 20.2

1.

(a) G
(b) B
(c) A, D, E and F
(d) A, D and F
(e) D and F
(f) F
(g) C
2. (a) $a=2, b=10, c=6, d=-2$
(b) $a=2, \quad b=3, \quad c=2, d=5$
(c) $a=\frac{3}{2}, b=-2, c=2, \quad d=-4$

MODULE - VI
 Algebra -II

3. No $4 . \quad$ No
CHECK YOUR PROGRESS $\mathbf{2 0 . 3}$
1.
(a)
$\begin{array}{ll}28 & 8 \\ 8 & 12\end{array}$
(b)
$\operatorname{Van}_{-2}^{-2} \boldsymbol{P}_{\text {(с) }} \operatorname{m}_{\frac{3}{2}}^{1} \frac{\mathrm{~B}}{\mathrm{~B}}$
(d)
$\boldsymbol{A}_{\boldsymbol{A}}-\frac{-9}{2} \boldsymbol{B}$

(d)
3.

年
年
(b) \mathbf{N}_{4}^{2}
(c)

(d)
4. (a)
(d)

CHECK YOUR PROGRESS 20.4

MODULE - VI
3.
(a)

3
1
${ }_{7} \frac{6}{6}$
 -2
7
-5 -3
-1
7
 N -14
9
15
6.

N 21
31 $\boldsymbol{P}_{\text {(d) }}\left[\begin{array}{cc}\frac{-17}{5} & \frac{-21}{5} \\ \frac{-27}{5} & \frac{-31}{5}\end{array}\right]$
(a)

(d) $y_{2}^{6} \boldsymbol{p}^{6}$

We observe that $(A+B)^{\prime}=B^{\prime}+A^{\prime}$
8.

(a) $\operatorname{lom}_{-5}^{0} \quad 2 \quad 2$
 $\underset{0}{\mathrm{~K}}$

${ }_{-3}^{3} \boldsymbol{P}^{2}(\mathrm{c})$
${ }_{2} \boldsymbol{P}$

CHECK YOUR PROGRESS 20.5

5. Both AB and BA do not exist. AB does not exist since the number of columns of A is not equal to the number of rows of B. $B A$ also does not exist since number of coluumns of B is not equal to the number of rows of A.
6.

8. $\quad \mathrm{AB}=\left|\begin{array}{lc}\mathrm{N}_{0} & 0 \\ -1\end{array}\right|$

9. (a) $x=3, y=-1$
(b) $x=-1, y=2$
12.
(a) $\operatorname{ly}_{2}^{18}{ }_{6}^{18}$
(b) $\operatorname{VI}_{2}^{18}{ }_{6}^{18} D$
${ }^{10} \mathrm{MP}$
(1) MP
${ }_{\text {c. }}$ MP
(f) $\operatorname{la}_{9}^{2} \boldsymbol{T}_{15}^{3} \mid D$
13.
(a)

(b)

Here, $A \neq B$ and $C \neq O$, yet $A C=B C$
i.e. cancellation law does not hold good for matrices.
14.
(a)

(b)

(c)

(d)
$\mathbf{V N}_{-1} \quad-8 \mathbf{1 0}$
(e)

We observe that $A(B+C)=A B+A C$
16.
$x=\int_{3}^{3}$
18. (a) No
(b) No
(c) No

CHECK YOUR PROGRESS 20.6

1. (a) $\frac{1}{25}\left[\begin{array}{rr}3 & 1 \\ 4 & -7\end{array}\right]$ (b) $\frac{1}{23}\left[\begin{array}{rr}5 & -6 \\ 3 & 1\end{array}\right]$ (c) does not exist
(d) $\left[\begin{array}{rrr}1 & -2 & -3 \\ -2 & 4 & 7 \\ -3 & 5 & 9\end{array}\right]$ (e) $\left[\begin{array}{rrr}3 & -4 & 3 \\ -2 & 3 & -2 \\ 8 & 12 & 9\end{array}\right]$

TERMIAL EXERCISE

1.

(a) 2
(b) 6
(c) 9
(d) 12
2.

(b)

3.
(a) 3×1
(b) 1×3
(c) 3×2
(d) 2×3
4.
(a) $x=1, y=2, z=3$
(b) $x=5, y=1, z=5$
(c) $x=3, y=-3, z=3$
(d) $x=2, y=1, z=5$

MODULE - VI
Algebra -II

6. (a)

(c)
 -8
0
5.
(a)

7. $a=\frac{3}{2} \quad b=-\frac{3}{2}$
9. $\mathrm{AB}=\boldsymbol{y y}_{38}^{13} 11 \underset{43}{ }$

10. $\quad \mathrm{AB}=\operatorname{ma}_{0}^{0}{ }_{0}^{\mathbf{B}}$ $B A={\underset{0}{M}}_{0}^{0} \quad ; \mathrm{AB}=\mathrm{BA}$
11.

12. $\quad \mathbf{M}_{-1} \left\lvert\, \begin{array}{cc}1 & 1 \\ -4 & 10\end{array} \mathbf{D}\right.$
13. $x=1, y=-4$.
15. $\left[\begin{array}{rr}1 & -2 \\ -2 & 5\end{array}\right]$
16. $\left[\begin{array}{rr}3 & -5 \\ -1 & 2\end{array}\right]$
17. $\left[\begin{array}{rr}7 & -10 \\ -2 & 3\end{array}\right]$
18. $\frac{1}{22}\left[\begin{array}{ll}-4 & +5 \\ +2 & +3\end{array}\right]$
19. $\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$
20. $\left[\begin{array}{rr}\cos x & -\sin x \\ -\sin x & \cos x\end{array}\right]$
21. $\cos ^{2} \frac{x}{2}\left[\begin{array}{rr}1 & -\tan x / 2 \\ \tan x / 2 & 1\end{array}\right]$
22. $\left[\begin{array}{rrr}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right]$
23. $\left[\begin{array}{rrr}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$
24. $\left[\begin{array}{rrr}1 & 1 & -1 \\ -1 & 1 & 0 \\ 2 & -5 & 2\end{array}\right]$

