

Sets

- Collection of well defined objects.
- Set is denoted by capital letters and elements are in small letters

Representation of Set

I. Roaster Method/Tabular Method

Listing of all elements separated by commas and enclosed them in curly bracket.

$$
A=\{1,2,3,4,5\}
$$

II. Set-Builder Form

Represented the elements by some common property

$$
A=\{x: x \in \operatorname{Nandx}<6\}
$$

Classification of Sets

- Finite and Disjoint Sets
- Empty/Null Sets
- Singleton Sets
- Disjoint sets
- Equal and equivalent Sets

Sub-Sets

- If A and B are two sets seen that each elements of set A is an elements of set B.It is denoted as $\mathrm{A} \subset \mathrm{B}$
- $A \subseteq A \& 1 \subset \mathrm{~A}$
- If $A \subseteq B$ and $\mathrm{A} B \subseteq A$ than $\mathrm{A}=\mathrm{B}$
- If $A \subseteq C$ and $\mathrm{A} \neq \mathrm{B}$, than A is proper subset of B
- If A is set with $\mathrm{n}(\mathrm{A})=\mathrm{P}$, then number subset of $A=2^{p}$

Power Set

- The set of all subsets of the given set is known as power et
- The power set of a set A is denoted as $\mathrm{P}(\mathrm{A})$
- \quad If $|A|=n, P(A)=2^{n}$

Universal Sets

- Universal set is the set of all objects pertaining to a particular problem
- It is denoted as U

Venn diagram

- Diagrammatical representation of set is known as Venn diagram
- Universal set U is represented by interior of rectangle and other set are represented by interior of circles

Components of a Set

- The component of set A is the set of A is the set of elements which are in U but not in A
- It is represented $A^{\prime}=U-A$
- $A^{c}=U-A, U^{c}=Q$
- $A \cup A^{\prime}=U, A \cap A^{\prime}=Q,\left(A^{\prime}\right)^{\prime}=A$

De Morgan's Law

a) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
b) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Operation on Sets

1. Intersection of Sets

The intersection of set A and B is denoted by $\mathrm{A} \cap B$

$$
A \cap B=\{x: x \in \text { Aand } x \in B\}
$$

2. Union of Sets

The union of two sets A and B is denoted as $A \cup B$

$$
A \cup B=\{x: x \in \text { Aor } x \in B\}
$$

3. Difference of Sets

The difference of set B from set A is the set of those elements which are B but not in A

It is denoted as A-B

$$
\begin{aligned}
& A-B=\{x: x \in \text { Aand } x \notin B\} \\
& B-A=\{x: x \in \text { Band } x \notin A\}
\end{aligned}
$$

1) If two sets do not have any common element, then these sets are as:
(A) Finite sets
(B) Infinite sets
(C) Disjoint sets
(D) Empty sets
2) In a set ' A ' have three elements, then number of subsets of ' A ' are:
(A) 3
(B) 9
(C) 8
(D) 6
3) The double complement of any set is equal to:
(A) Sets itself
(B) Null set
(C) Complement of set
(D) Undefined
4) Between two sets 'A' and 'B: if $A \subseteq B$ and $B \subseteq A$, then relationship between ' A ' and ' B ' as:
(A) $\mathrm{A}>\mathrm{B}$
(B) $\mathrm{A}<\mathrm{B}$
(C) $\mathrm{A}=\mathrm{B}$
(D) $\mathrm{A}=\mathrm{B}=0$
5) $\mathrm{A}=\{1,2,3,4,5,6\}, \mathrm{B}=\{2,3,4\}$ then $B-A$ is equal to:
(A) $\{1,5,6\}$
(B) $\{2,3,4\}$
(C) $\{4,5,6\}$
(D) $\{1,2,3\}$
1. By taking suitable example, prove De-Morgan's Law
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(ii) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
2. Draw Ven diagram for each of following case:
(i) $A \cap B$, When $B \subset A$
(ii) $A \cap B$, When A and B are disjoint sets
3. If $A=\{x: x \in N\}$ and $B=\{y: y \in$ Z and $-8 \leq y \leq 0\}$

Find $A \bigcup B$, and write your answer in the roster form and in set - builder form
4. By taking an example, prove that

$$
(A-B) \cup(B-A)=(A \cup B)-(B \cap A)
$$

5 Write the subset of the following sets 5 i $\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$ ii $\{\mathrm{a}, \mathrm{b}\}$
(i)
\qquad

1 D
2 C
3 A
4 C
5A

