Principle of Mathematical Induction

- Statement : -

The sentence, which is either true or false is called as statement
(i) 1 am 20 years old
(ii) If $x=2$, then $x^{2}=4$
(iii) When you leave from home?

(iv)How wonderful the garden!

- The Principle of Mathematical

Induction

Let $\mathrm{p}(\mathrm{n})$ be a statement involving a natural number n , if
(i) It is true for $\mathrm{n}=1$, i.e $\mathrm{P}(1)$ is true; and
(ii) Assuming $\mathrm{P}(\mathrm{K})$ to be true, it can be proved that $\mathrm{P}(\mathrm{K}+1)$ is true; Then by Principle of Mathematical induction $p(n)$ must be true for every natural number n .

- The Mathematical Statement

(1) $\mathrm{p}(\mathrm{n}): 1+2+3----+\mathrm{n}=$ $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(2) $\mathrm{p}(\mathrm{n}): 2^{\mathrm{n}}>n$
(3) $p(n): 1^{2}+2^{2}+3^{2}+---->$ $\mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
(4) $\mathrm{p}(\mathrm{n}): 1+4+7+---+$ $(3 n-2)=\frac{n(3 x-1)}{26}$
(5) $\mathrm{p}(\mathrm{n}): \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+---+$

$$
\frac{1}{\mathrm{n}(\mathrm{n}+1)}=\frac{\mathrm{n}}{(\mathrm{n}+1)},
$$

Where n EN, all statements are proved by Mathematical Induction.

- The word induction means, formulating a general principle (or rate) based on several particular instances.

Example : Using principle of mathematical induction prove that $\left(\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}\right)$ is a natural number for all natural number n

Solution Let $P_{n}:\left(\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}\right)$ is a natural number
$\mathrm{P}(1)=\left(\frac{1}{5}+\frac{1}{3}+\frac{7}{15}\right)=1$ which is a natural number
$P(1)$ is true.
Let $\mathrm{P}(\mathrm{k}):\left(\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}\right)$ is a natural number be true

Now $\left(\frac{(k+1)^{5}}{5}+\frac{(k+1)^{3}}{3}+\frac{7(k+1)}{15}\right)$
$=\frac{1}{5}\left[k^{5}+5 k^{4}+10 k^{2}+5 k+1\right]+$
$\frac{1}{3}\left[k^{3}+3 k^{2}+3 k+1\right]+\left(\frac{7}{15} k+\frac{7}{15}\right)$

$$
\left(\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}\right) \text { is a natural number }
$$

Also $k^{4}+2 k^{3}+3 k^{2}+2 k$ is a natural number
$\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true
$\mathrm{P}(\mathrm{n})$ is true is true for all natural number.

Stretch Yourself

Prove the following by principle of mathematical induction

1. $1+2+3+4 \ldots \ldots .+\mathrm{P}=\frac{p(p+1)}{2}$
2. $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots \ldots \ldots \cdot \frac{1}{X(X+1)}=\frac{X(X+1)(2 X+1)}{6}$
3. $\mathrm{a}+(\mathrm{a}+\mathrm{d})+(\mathrm{a}+2 \mathrm{~d})+\ldots \ldots . . \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\frac{n}{2}[2 a+(n-1) d]$
4. $1 \times 3+2 \times 4+3 \times 5+\cdots \ldots . n \times(n+2)=\frac{1}{6} n(n+1)(2 n+7)$
5. $2+5+8+11+\cdots .(3 n-1)=\frac{1}{2} n(3 n+1)$
6. $5^{3 n}-1$ is divisible by 124 for all $n \in N$
7. $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \cdots \cdot \frac{1}{n^{2}}<2-\frac{1}{n}$ for all $n \geq 2, n \in N$
8. $7^{2 n}+2^{3 n-3} \times 3^{n-1}$ is divisible by 25 for all $n \in N$
9. $1^{2}+3^{2}+5^{2}+\cdots(2 n-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right)$
10. $4^{2 n}+15 n-1$ is divisible by 9 for all $n \in N$
