Senior Secondary Course Learner's Guide, Mathematics (311)

Binomial Theorem

• Binomial Theorem

The Statement of Binomial expansion $(x + y)^n$, where n is the positive integer is known as Binomial theorem.

$$(x + y)^n =$$

 $nc_0 x^n + nc_1 x .^{n-1} y^1 +$
 $nc_2 x^{n-2}.$

 $(x + - - - - + (x + y)^n) = nc_{n-1} xy^{n-1}$

 $nc_n y^n$, where $n \in N$ and $x, y \in R$

 General Term in a Binomial Expansion

$$T_{r+1} + nc_r x^{n-r} y^r$$

• Middle Terms in a Binomial Expansion

Case -1 :- When exponent n of the binomial is even, then $\left(\frac{n}{2}+1\right)^{\text{th}}$ term is the middle term.

Case -2 :- When the exponent n of a binomial is an odd natural number, then the $\left(\frac{n+1}{2}\right)^{\text{th}}$ and $\left(\frac{n+3}{2}\right)^{\text{th}}$ terms are two middle terms.

Q.1 Fourth term in the expansion of $\left(\frac{a}{3}+9b\right)^{10}$ is-(A) 40 a⁷ b³ (B) 40a³b⁷ (C) 1890 a⁶b⁴ (D) 1890a⁴b⁶

Check Yourself

Q.2 Second term in the expansion of $(2x + 3y)^5$ will be -(A) 46 x^2y^3 (B) 30 x^3y^2 (C) 240 x^4y (D) 810 xy^4

- Q.3 The 5th term of the expansion of $(x 2)^8$ is -(A) ${}^{8}C_{5}x^{3}(-2)^{5}$ (B) ${}^{8}C_{5}x^{3}2^{5}$ (C) ${}^{8}C_{4}x^{4}(-2)^{4}$ (D) ${}^{8}C_{6}x^{2}(-2)^{6}$
- Q.4 The number of terms in expansion of $(x 3x^2 + 3x^3)^{20}$ is-
 - (A) 60 (B) 61
 - (C) 40 (D) 41

Mathematics (311)

Senior Secondary Course Learner's Guide, Mathematics (311)

Q.5 The term with coefficient ${}^{6}C_{2}$ in the expansion of $(1+x)^{6}$ is-(A) T₁ and T₃ (B) T₂ and T₄

- (C) T_3 and T_5 (D) None of these
- **Q.6** If n is a positive integer, then r^{th} term in the expansion of $(1-x)^n$ is-

(A) ${}^{n}C_{r}(-x)^{r}$ (B) ${}^{n}C_{r}x^{r}$ (C) ${}^{n}C_{r-1}(-x)^{r-1}$ (D) ${}^{n}C_{r-1}x^{r-1}$

- Q.7 If the 4th term in the expansion of $\left(ax + \frac{1}{x}\right)^n$ is $\frac{5}{2}$, then the values of a and n are-(A) 1/2, 6 (B) 1, 3 (C) 1/2, 3 (D) can not be found
- **Q.8** The coefficient of $(3r)^{th}$ term and coefficient of $(r + 2)^{th}$ term in the expansion of $(1 + x)^{2n}$ are equal then (where r > 1, n > 2), positive integer)-
 - (A) r = n/2 (B) r = n/3

(C)
$$r = \frac{n+1}{2}$$
 (D) $r = \frac{n-1}{2}$

- **Q.9** The coefficient of a^2b^3 in $(a + b)^5$ is-
 - (A) 10 (B) 20
 - (C) 30 (D) 40
- **Q.10** The coefficient of x^7 and x^8 in the expansion of $\left(2 + \frac{x}{3}\right)^n$ are equal, then n is equal to-
 - (A) 35 (B) 45
 - (C) 55 (D) None of these

Q.11 The coefficient of x^5 in the expansion of $(2 + 3x)^{12}$ is-(A) ${}^{12}C_52^5$, 3^7 (B) ${}^{12}C_62^6$. 3^6 (C) ${}^{12}C_52^7$. 3^5 (D) None of these

Q.12 If the expansion of $\left(x^2 - \frac{1}{4}\right)^n$, the coefficient of third term is 31, then the value of n is-

(A) 30 (B) 31

(C) 29 (D) 32

Senior Secondary Course Learner's Guide, Mathematics (311)

- **Q.13** If A and B are coefficients of x^r and x^{n-r} respectively in the expansion of $(1+x)^n$, then-
 - (A) A = B
 - $(B) A \ge B$
 - (C) A = 0, B for some n
 - (D) None of these
- **Q.14** If $(1 + by)^n = (1 + 8y + 24y^2 +)$ then the value of b and n are respectively-
 - (A) 4, 2 (B) 2, -4
 - (C) 2, 4 (D) -2, 4
- Q.15 The number of terms in the expansion of

$$(1 + 5\sqrt{2} x)^9 + (1 - 5\sqrt{2} x)^9$$
 is-
(A) 5 (B) 7 (C) 9 (D) 10

Stretch Yourself

- 1. If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots +$
 - $C_n x^n$, then $\frac{(C_0 + C_1)(C_1 + C_2)...(C_{n-1} + C_n)}{C_1 C_2...C_n}$
- 2. Find the 5th term of the expansion of $(x-2)^8$

3. Find the number of terms in the expansion of

a. $(1 + 5\sqrt{2} x)^9 + (1 - 5\sqrt{2} x)^9$

- 4. Calculate the middle term in the expansion of $(1 3x + 3x^2 x^3)^6$
- 5. If $(1 + x 2x^2)^6 = 1 + C_1x + C_2x^2 + C_3x^3 + \dots + C_{12} x^{12}$, then calculate the value of $C_2 + C_4 + C_6 + \dots + C_{12}$

Answer to check yourself

1A 2C 3C 4D 5C
6C 7A 8A 9A 10C
11C 12D 13A 14C 15A

find