## 12

## Binomial Theorem

## Check Yourself

## - Binomial Theorem

The Statement of Binomial expansion $(x+y)^{n}$, where $n$ is the positive integer is known as Binomial theorem.

$$
\begin{aligned}
& (x+y)^{n}= \\
& n c_{o} x^{n}+\mathrm{nc}_{1} x \cdot{ }^{n-1} y^{1}+ \\
& \mathrm{nc}_{2} x^{n-2} . \\
& \quad+----+(x+y)^{n}= \\
& \quad n c_{n-1} x y^{n-1} \\
& \quad n c_{n} y^{n}, \text { where } n \in N \text { and } \\
& \quad x, y \in R
\end{aligned}
$$

- General Term in a Binomial Expansion

$$
\mathrm{T}_{\mathrm{r}+1}+\mathrm{nc} \mathrm{c}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}
$$

- Middle Terms in a Binomial Expansion

Case - 1 :- When exponent n of the binomial is even, then $\left(\frac{n}{2}+1\right)^{\text {th }}$ term is the middle term.

Case - 2 :- When the exponent n of a binomial is an odd natural number, then the $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$ terms are two middle terms.
Q. 1 Fourth term in the expansion of $\left(\frac{a}{3}+9 b\right)^{10}$ is-
(A) $40 a^{7} b^{3}$
$40 a^{3} b^{7}$
(C) $1890 a^{6} b^{4}$
(D) $1890 a^{4} b^{6}$
Q. 2 Second term in the expansion of (2x $+3 y)^{5}$ will be -
(A) $46 x^{2} y^{3}$
(B) 30
$x^{3} y^{2}$
(C) $240 x^{4} y$
$810 \mathrm{xy}^{4}$
Q. 3 The $5^{\text {th }}$ term of the expansion of ( $\mathrm{x}-$ 2) 8 is -
(A) ${ }^{8} \mathrm{C}_{5} \mathrm{x}^{3}(-2)^{5}$
(B) ${ }^{8} \mathrm{C}_{5} \mathrm{x}^{3} 2^{5}$
(C) ${ }^{8} \mathrm{C}_{4} \mathrm{x}^{4}(-2)^{4}$
(D) ${ }^{8} \mathrm{C}_{6} \mathrm{x}^{2}(-2)^{6}$
Q. 4 The number of terms in expansion of ( $x$ $\left.-3 \mathrm{x}^{2}+3 \mathrm{x}^{3}\right)^{20}$ is-
(A) 60
(B) 61
(C) 40
(D) 41
Q. 5 The term with coefficient ${ }^{6} \mathrm{C}_{2}$ in the expansion of $(1+x)^{6}$ is-
(A) $T_{1}$ and $T_{3}$
(B) $\mathrm{T}_{2}$ and $\mathrm{T}_{4}$
(C) $\mathrm{T}_{3}$ and $\mathrm{T}_{5}$
(D) None of these
Q. 6 If $n$ is a positive integer, then $r^{\text {th }}$ term in the expansion of $(1-\mathrm{x})^{\mathrm{n}}$ is-
(A) ${ }^{n} C_{r}(-x)^{r}$
$\mathrm{n}_{\mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}}$
(C) ${ }^{n} C_{r-1}(-x)^{r-1}$
(D) ${ }^{n} C_{r-1} X^{r-1}$
Q. 7 If the $4^{\text {th }}$ term in the expansion of $\left(a x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, then the values of a and $n$ are-
(A) $1 / 2,6$
(B) 1,3
(C) $1 / 2,3$
(D) can not be found
Q. 8 The coefficient of $(3 \mathrm{r})^{\text {th }}$ term and coefficient
$(\mathrm{r}+2)^{\text {th }}$ term in the expansion of $(1+$ $\mathrm{x})^{2 \mathrm{n}}$ are equal then (where $\mathrm{r}>1, \mathrm{n}>$ 2 ), positive integer)-
(A) $r=n / 2$
(B) $\mathrm{r}=$
n/3
(C) $r=\frac{n+1}{2}$
(D) $r=\frac{n-1}{2}$
Q. 9 The coefficient of $a^{2} b^{3}$ in $(a+b)^{5}$ is-
(A) 10
(B) 20
(C) 30
(D) 40
Q. 10 The coefficient of $x^{7}$ and $x^{8}$ in the expansion of $\left(2+\frac{x}{3}\right)^{n}$ are equal, then $n$ is equal to-
(A) 35
(B) 45
(C) 55
(D) None of these
Q. 11 The coefficient of $x^{5}$ in the expansion
of
$(2+3 x)^{12}$ is-
(A) ${ }^{12} \mathrm{C}_{5} 2^{5}, 3^{7}$
(B) ${ }^{12} \mathrm{C}_{6} 2^{6} \cdot 3^{6}$
(C) ${ }^{12} \mathrm{C}_{5} 2^{7} \cdot 3^{5}$
(D) None of these
Q. 12 If the expansion of $\left(x^{2}-\frac{1}{4}\right)^{n}$, the coefficient of third term is 31 , then the value of $n$ is-
(A) 30
(B) 31
(C) 29
(D) 32
Q. 13 If A and B are coefficients of $\mathrm{x}^{\mathrm{r}}$ and $x^{n-r}$ respectively in the expansion of $(1+x)^{\mathrm{n}}$, then-
(A) $\mathrm{A}=\mathrm{B}$
(B) $\mathrm{A} \geq \mathrm{B}$
(C) $\mathrm{A}=0, \mathrm{~B}$ for some n
(D) None of these
Q. 14 If $(1+\text { by })^{n}=\left(1+8 y+24 y^{2}+\ldots ..\right)$ then the value of $b$ and $n$ are respectively-
(A) 4,2
(B) $2,-4$
(C) 2, 4
(D) $-2,4$
Q. 15 The number of terms in the expansion of
$(1+5 \sqrt{2} x)^{9}+(1-5 \sqrt{2} x)^{9}$ is-
(A) 5
(B) 7
(C) 9
(D) 10

## Stretch Yourself

1. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots .+$
$\mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$, then find
$\frac{\left(\mathrm{C}_{0}+\mathrm{C}_{1}\right)\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \ldots\left(\mathrm{C}_{\mathrm{n}-1}+\mathrm{C}_{\mathrm{n}}\right)}{\mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{n}}}$
2. Find the $5^{\text {th }}$ term of the expansion of $(x-2)^{8}$
3. Find the number of terms in the expansion of
a. $(1+5 \sqrt{2} x)^{9}+(1-5 \sqrt{2} x)^{9}$
4. Calculate the middle term in the expansion
of
$\left(1-3 x+3 x^{2}-x^{3}\right)^{6}$
5. If $\left(1+x-2 x^{2}\right)^{6}=1+C_{1} x+C_{2} x^{2}+$ $\mathrm{C}_{3} \mathrm{x}^{3}+\ldots .+\mathrm{C}_{12} \mathrm{x}^{12}$, then calculatethe value of $\mathrm{C}_{2}+\mathrm{C}_{4}+\mathrm{C}_{6}+$ ... $+\mathrm{C}_{12}$

Answer to check yourself

1A 2C 3C 4 D 5 C
6 C 7 A 8 A 9 A 10 C
11C 12 D 13 A 14 C 15 A

