13

Cartesian System of Rectangular

Co-ordinates

- Rectangular Co-ordinate Axes

- Distance Between two points

The distance between two points
$\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \quad$ and $\quad \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ as $\quad \mathrm{PQ}=$ $\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$

The distance between a point $\mathrm{p}(\mathrm{x}, \mathrm{y})$ from original $(0, o)$ as
$\mathrm{OP}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$

Section Formula

(i) Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are two points on a line and $\mathrm{R}(\mathrm{x}, \mathrm{y})$ divide P Q internally in the ration m and n, then the co-ordinate of R are

$$
\left(\frac{\mathrm{mx}_{2}+n \mathrm{x}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my} \mathrm{y}_{2}+\mathrm{n} \mathrm{y}_{1}}{\mathrm{~m}+\mathrm{n}}\right)
$$

(ii) If the point R (x, y) divide the line externally in the ratio $\mathrm{m}: \mathrm{n}$ then co-ordinate of R as :

$$
\left(\frac{\mathrm{mx}_{2}-\mathrm{nx}}{\mathrm{~m}-\mathrm{n}}, \frac{\mathrm{my} \mathrm{y}_{2}-\mathrm{ny} y_{1}}{\mathrm{~m}-\mathrm{n}}\right)
$$

(i) The co-ordinate of the mid-point of a line segment PQ as

$$
\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)
$$

Area of a Triangle

Area of triangle
$A B C=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$

Co linearity of three points

$A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are three points are Collinear, If and only if the Area of the triangle ABC become Zero.

SLOPE of A Line

The Slope M of a line through
$A\left(x_{1}, y_{1}\right)$, and $B\left(x_{2}, y_{2}\right)$ is given by m $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- Two line of Slopes m_{1} and m_{2} are parallel, if and only if $m_{1}=m_{2}$
- Two line of Slopes m_{1} and m_{2} are perpendicular, if and only if $m_{1} \cdot m_{2}=-1$

Angle between Two Lines

Let L1 \& L_{2} be two non-vertical and nonperpendicular lines with Slopes m_{1} and m_{2} respectively and be the angle between two lines, then
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \cdot \mathrm{~m}_{2}}\right|$, where

$$
1+\mathrm{m}_{1} \mathrm{~m}_{2}=\theta
$$

(i) If $\tan \theta$ is + ive, then angle is acute
(ii) If $\tan \theta$ is +ive, then angle is obtuse

Check Your Progress

1. Area of the triangle with vertices $(4,4)$; $(3,-2)$ and $(3,-16)$ is -
(A) 7
(B) 18
(C) 15
(D) 27
2. The Area of the triangle with vertices (1, 2);
$(5,7)$ and $(3,8)$ is -
a. (A) 6
(B) 7
b. (C) 8
(D) 9
3. If $(5,-4)$ and $(-3,2)$ are two opposite vertices of a square then its area is -
(A) 50
(B) 75
(C) 25 (D) 100
4. The distance between feet of perpendiculars drawn from a point $(-3$, 4) on both axes is -
(A) 5
(B) 2
(C) 4
(D) 1
5. P, Q and R three points on the line joining $A(-6,8)$ and $B(8,-6)$ such that $A P=P Q$ $=\mathrm{QR}=\mathrm{RB}$, then coordinates of R are -
(A) $(-5 / 2,9 / 2)$
(B) $(5 / 2,9 / 2)$
(C) $(5 / 2,-9 / 2)$
(D) $(9 / 2,-5 / 2)$
6. The mid points of the sides of a triangle are $(5,0),(5,12)$ and $(0,12)$ the orthocentre of this triangle is -
a. (A) $(0,0)$
(B) $(0$,
24)

b. (C) $(10,0)$
(D)
$\left(\frac{13}{3}, 8\right)$
7. The extremities of hypotenuse of a rightangled triangle are $(2,0)$ and $(0,2)$, then locus of its third vertex is -
(A) $x^{2}+y^{2}-2 x-2 y=0$
(B) $x^{2}+y^{2}+2 x-2 y=0$
(C) $x^{2}+y^{2}-2 x+2 y=0$
(D) $x^{2}+y^{2}+2 x+2 y=0$
8. Line segment joining $(5,0)$ and $(10 \cos \alpha$, $10 \sin \alpha$ is divided by a point P in ratio 2 $: 3$. If α varies then locus of P is a -
(A) Pair of straight lines
(B) Circle
(C) Straight line
(D) Parabola
9. The distance between feet of perpendiculars drawn from a point (-3 , 4) on both axes is -
(A) 5
(B) 2
(C) 4
(D) 1
10. P, Q and R three points on the line joining
$\mathrm{A}(-6,8)$ and $\mathrm{B}(8,-6)$ such that $\mathrm{AP}=\mathrm{PQ}$ $=\mathrm{QR}=\mathrm{RB}$, then coordinates of R are -
(A) $(-5 / 2,9 / 2)$
(B) $(5 / 2,9 / 2)$
(C) $(5 / 2,-9 / 2)$
(D) $(9 / 2,-5 / 2)$
11. The mid points of the sides of a triangle are $(5,0),(5,12)$ and $(0,12)$ the orthocentre of this triangle is -
(A) $(0,0)$
(B) $(0,24)$
(C) $(10,0)$
(D) $\left(\frac{13}{3}, 8\right)$
12. The extremities of hypotenuse of a rightangled triangle are $(2,0)$ and $(0,2)$, then locus of its third vertex is -
(A) $x^{2}+y^{2}-2 x-2 y=0$
(B) $x^{2}+y^{2}+2 x-2 y=0$
(C) $x^{2}+y^{2}-2 x+2 y=0$
(D) $x^{2}+y^{2}+2 x+2 y=0$
13. Line segment joining $(10,0)$ and $(20 \cos \alpha, 20 \sin \alpha)$ is divided by a point P in ratio $4: 6$. If α varies then locus of P is a-
(A) Pair of straight lines
(B) Circle
(C) Straight line
(D) Parabola
14. If $(3,-4)$ and $(-6,5)$ are the extremities of the diagonal of a parallelogram and $(-2,1)$ is
its third vertex, then its fourth vertex is -
(A) $(-1,0) \quad$ (B) $(-1,1)$
(C) $(0,-1) \quad$ (D) None of these
15. The coordinates of the point which divides the line segment joining $(-3,-4)$
and $(-8,7)$ externally in the ratio 7:5 are
(A) $(41 / 2,69 / 2)$
(B) $(-41 / 2,-69 / 2)$
(C) $(-41 / 2,69 / 2)$
(D) None of these
16. The ratio in which the point $(8,4)$ divides the line segment joining the points $\quad(5, \quad-2) \quad$ and $(9,6)$ is -
(A) $2: 1$
(B) $3: 1$
(C) $2: 3$
(D) $1: 2$

Answer to check Progress

1 A 2 B 3 A 4 A 5D 6A 7 A 8 B 9C 110 C 11 D
12 A 13 B 14 A 15 C 16 B

