- Straight line parallel to an Axis

- The equation of any line parallel to x axis is $y=b$
- The equation of any line parallel to y axis is $\mathrm{x}=\mathrm{c}$

Equation of straight line in various

 standard forms(i) Slope intercept form

$$
y=m x+c
$$

(ii) Point - Slope form

$$
m=\frac{y-y 1}{x-x y}
$$

Hence equal of straight line

$$
\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-x_{1}\right)
$$

(iii) Two- Point Form

$$
\text { Here } m=\frac{y_{2}-y_{1}}{x_{2}-x y}
$$

The equation of straight line in two point form as

$$
y-y_{1}=m(x-x y)
$$

$$
\gg y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x y}\left(x-x_{1}\right)
$$

(iv) Intercept form
$\frac{x}{a}+\frac{y}{b}=1$
(v) Normal Form
$x \cos \ltimes+y \sin \ltimes=P$
Where 'p' is the length of perpendicular from origin and ' \ltimes ' be the angle between positive direction.

General Equation of Straight line

The general form of equation

$$
A x+B y+C=0
$$

(i) Slope of line $=-\frac{A}{B}$
(ii) x - intercept $=-\frac{\mathrm{C}}{\mathrm{A}}$
(iii) y - intercept $=-\frac{C}{B}$
(iv) Length of perpendicular from the origin to the line

$$
=\frac{|C|}{\sqrt{A^{2}+B^{2}}}
$$

Distance of a given point $\left(x_{1}+y_{1}\right)$ from a given line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ is

$$
\mathrm{d}=\left|\frac{\mathrm{Ax}}{1}+\mathrm{B} \mathrm{y}_{1}+\mathrm{C}\right|
$$

Check Your Progress

1. The equation of the line which passes through the point $(3,4)$ and the sum of its intercept on the axes is 14 , is -
(A) $4 x-3 y=24, x-y=7$
(B) $4 x+3 y=24, x+y=7$
(C) $4 x+3 y+24=0, x+y+7=$ 0
(D) $4 x-3 y+24=0, x-y+7=$ 0
2. If the intercept made by the line between the axes is bisected at the point ($\mathrm{x}_{1}, \mathrm{y}_{1}$), then its equation is -
(A) $\frac{\mathrm{x}}{\mathrm{x}_{1}}+\frac{\mathrm{y}}{\mathrm{y}_{1}}=2$
(B) $\frac{x}{x_{1}}+\frac{y}{y_{1}}=1$
(A)(C) $\frac{x}{x_{1}}+\frac{y}{y_{1}}=\frac{1}{2}$
(D) None of these
3. If $x+2 y=3$ is a line and $A(-1,3)$; $\mathrm{B}(2,-3) ; \mathrm{C}(4,9)$ are three points, then -
(A)(A) A is on one side and B, C are on other side of the line
(B) (B) A, B are on one side and C is on other side of the line
(C) (C) A, C on one side and B is no other side of the line
(D) All three points are on one side of the line
4. If $\mathrm{A}(-2,1), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-4)$ are three points, then the angle between BA and BC is -
(A) $\tan ^{-1}\left(\frac{3}{2}\right)$
(B) $\tan ^{-1}\left(\frac{2}{3}\right)$
(C) $\tan ^{-1}\left(\frac{7}{4}\right)$
(D) None of these
5. The equation of a line parallel to ax + by $+\grave{c}=0$ and passing through the point (c, d) is -
(A) $a(x+c)-b(y+d)=0$
(B) $a(x+c)+b(y+d)=0$
(C) $a(x-c)+b(y-d)=0$
(D) None of these
6. If the point $(5,2)$ bisects the intercept of a line between the axes, then its equation is-
(A) $5 \mathrm{x}+2 \mathrm{y}=20$
(B) $2 x+5 y=20$
(C) $5 x-2 y=20$
(D) $2 x-5 y=20$
7. If the point $(3,-4)$ divides the line between the x-axis and y-axis in the ratio $2: 3$ then the equation of the line will be -
(A) $2 x+y=10$
(B) $2 x-y=10$
(C) $x+2 y=10$
(D) $x-2 y=10$
8. The angle made by the line joining the points $(1,0)$ and $(-2, \sqrt{3})$ with x axis is -
(A) 120°
(B) 60°
(C) 150°
(D) 135°
9. If $\mathrm{A}(2,3), \mathrm{B}(3,1)$ and $\mathrm{C}(5,3)$ are three points, then the slope of the line passing through
A and bisecting BC is -
(A) $1 / 2$
(B) -2
(C) $-1 / 2$
(D) 2
10. If the vertices of a triangle have integral
coordinates, then the triangle is -
(A) Isosceles
(B) Never equilateral
(C) Equilateral
(D) None of these
11. The equation of a line passing through
the point $(-3,2)$ and parallel to x -axis is -
(A) $x-3=0$
(B) $x+3=0$
(C) $y-2=0(D) y+2=0$
12. If the slope of a line is 2 and it cuts an intercept -4 on y-axis, then its equation will be -
(A) $y-2 x=4$
(B) $x=2 y-4$
(C) $y=2 x-4$
(D) None of these
13. The equation of the line cutting of an intercept -3 from the y-axis and inclined at an angle $\tan ^{-1} 3 / 5$ to the x axis is -
(A) $5 \mathrm{y}-3 \mathrm{x}+15=0$
(B) $5 y-3 x=15$
(C) $3 y-5 x+15=0$
(D) None of these

$9 \mathrm{C} 10 \mathrm{~B} \quad 11 \mathrm{~A} \quad 12 \mathrm{C} \quad 13 \mathrm{C}$

Stretch Yourself

1. Find the equation of the line which passes through the point $(3,4)$ and the sum of its intercept on the axes is 14
2. Calculate the distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along a line $x-y+1=0$
3. Find the equation of a line through the point of intersection of the lines $x-3 y+$ $1=0$ and $2 x+5 y-9=0$ and whose distance from the origin is $\sqrt{5}$.
4. Find the value of $4 \mathrm{P}_{1}{ }^{2}+\mathrm{P}_{2}{ }^{2}$

If P_{1} and P_{2} be perpendicular from the origin upon the straight lines $\mathrm{xsec} \theta+\mathrm{ycosec} \theta=$ a and $x \cos \theta-y \sin \theta=a \cos 2 \theta$ respectively
5. What is the angle between the lines $y-x+5=0$ and $\sqrt{3} x-y+7=0$

Answer to check your progress

$1 \mathrm{~B}, \quad 2 \mathrm{~A}, \quad 3 \mathrm{C}, \quad 4 \mathrm{~B}$,
5C, $\quad 6 \mathrm{~B} \quad 7 \mathrm{~B} \quad 8 \mathrm{~B}$

