

CIRCLES

Circle: -

A circle is the locus of points, which moves in a plane such that the distance from a fixed point in the same plane remains constant.

Equation of a Circle

Let C be the centre and a be the radius of the circle. The co-ordinate of $\mathrm{C}(\mathrm{h}, \mathrm{K})$, then
$(x-h)^{2}+(y-K)^{2}=a^{2}$

Let C be the centre and a be they radius of the circle. Coordinates of the centre are given to be (h, k), say. Take
any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the circle and draw perpendiculars CM and PN on OX. Again, draw CL perpendicular to PN .

In the right angled triangle CLP, $\mathrm{CL}^{2}+\mathrm{PL}^{2}=$ CP^{2}
$(x-h)^{2}+(y-K)^{2}=a^{2}$
If the circle passing through origin then the reach of circle $h^{2}+K^{2}=a^{2}$
I. circle passes through the origin

$$
\mathrm{h}^{2}+\mathrm{K}^{2}=\mathrm{a}^{2}
$$

II. circle does not pass through origin and the centre lies on the x -axis

$$
(x-h)^{2}+y^{2}=a^{2}
$$

III. circle passes through origin and the x axis is a diameter

$$
(x)^{2}+y^{2} \pm 2 a x=0
$$

IV. centre of the circle is origin

$$
(x)^{2}+y^{2}=a^{2}
$$

V. circle touches the x -axis

$$
(x)^{2}+y^{2}-2 h x-2 a y+h^{2}=0
$$

VI. circle touches the y -axis

$$
(x)^{2}+y^{2}-2 a x-2 k y+k^{2}=0
$$

VII. circle touches both the axes

$$
(x)^{2}+y^{2}-2 a x-2 a y+a^{2}=0
$$

General Equation of Circle in Second Degree in two variables

The standard equation of a circle with centre (h, k) and radius r is given by

$$
(\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{K})^{2}=\mathbf{r}^{2}
$$

$x^{2}+y^{2}+2 g x+2 f y+c=o \quad$ is the general equation of circle
centre $=(-g,-f)$
radius $=\sqrt{g^{2}+f^{2}-C}$

Check Your Progress

Q. 1 The length of the diameter of the circle $x^{2}+y^{2}-4 x-6 y+4=0$ is -
(A) 9
(B) 3
(C) 4
(D) 6
Q. 2 Which of the following is the equation of a circle?
(A) $x^{2}+2 y^{2}-x+6=0$
(B) $x^{2}-y^{2}+x+y+1=0$
(C) $x^{2}+y^{2}+x y+1=0$
(D) $3\left(x^{2}+y^{2}\right)+5 x+1=0$
Q. 3 The equation of the circle passing through
$(3,6)$ and whose centre is $(2,-1)$ is -
(A) $x^{2}+y^{2}-4 x+2 y=45$
(B) $x^{2}+y^{2}-4 x-2 y+45=0$
(C) $x^{2}+y^{2}+4 x-2 y=45$
(D) $x^{2}+y^{2}-4 x+2 y+45=0$
Q. 4 If $(4,3)$ and $(-12,-1)$ are end points of a diameter of a circle, then the equation of the circle is-
(A) $x^{2}+y^{2}-8 x-2 y-51=0$
(B) $x^{2}+y^{2}+8 x-2 y-51=0$
(C) $x^{2}+y^{2}+8 x+2 y-51=0$
(D) None of these
Q. 5 The radius of the circle passing through the points $(0,0),(1,0)$ and $(0,1)$ is-
(A) 2
(B) $\frac{1}{\sqrt{2}}$
(C) $\sqrt{2}$
(D) $\frac{1}{2}$
Q. 6 The radius of a circle with centre (a, b) and passing through the centre of
the circle $x^{2}+y^{2}-2 g x+f^{2}=0$ is-
(A) $\sqrt{(a-g)^{2}+b^{2}}$
(B) $\sqrt{a^{2}+(b+g)^{2}}$
(C) $\sqrt{a^{2}+(b-g)^{2}}$
(D) $\sqrt{(a+g)^{2}+b^{2}}$
Q. 7 If $(x, 3)$ and $(3,5)$ are the extremities of a diameter of a circle with centre at $(2, y)$. Then the value of x and y are-
$(\mathrm{A}) \mathrm{x}=1, \mathrm{y}=4$
(B) $x=4, y=1$
(C) $x=8, y=2$
(D) None of these
Q. 8 If $(0,1)$ and $(1,1)$ are end points of a diameter of a circle, then its equation is-
(A) $x^{2}+y^{2}-x-2 y+1=0$
(B) $x^{2}+y^{2}+x-2 y+1=0$
(C) $x^{2}+y^{2}-x-2 y-1=0$
(D) None of these
Q. 9 The coordinates of any point on the circle $x^{2}+y^{2}=4$ are-
(A) $(\cos \alpha, \sin \alpha)$
(B) $(4 \cos \alpha, 4 \sin \alpha)$
(C) $(2 \cos \alpha, 2 \sin \alpha)$
(D) $(\sin \alpha, \cos \alpha)$
Q. 10 The parametric coordinates of any point
on the circle $x^{2}+y^{2}-4 x-4 y=0$ are-
(A) $(-2+2 \cos \alpha,-2+2 \sin \alpha)$
(B) $(2+2 \cos \alpha, 2+2 \sin \alpha)$
(C) $(2+2 \sqrt{2} \cos \alpha, 2+2 \sqrt{2} \sin \alpha)$
(D) None of these
Q. 11 The parametric coordinates of a point on the circle $x^{2}+y^{2}-2 x+2 y-2=$ 0 are -
(A) $(1-2 \cos \alpha 1-2 \sin \alpha)$
(B) $(1+2 \cos \alpha, 1+2 \sin \alpha)$
(C) $(1+2 \cos \alpha,-1+2 \sin \alpha)$
(D) $(-1+2 \cos \alpha, 1+2 \sin \alpha)$
Q. 12 The equation $k\left(x^{2}+y^{2}\right)-x-y+k$ $=0$ represents a real circle, if-
(A) $\mathrm{k}<\sqrt{2}$
(B) $\mathrm{k}>\sqrt{2}$
(C) $\mathrm{k}>1 / \sqrt{2}$
(D) $0<|\mathbf{k}| \frac{1}{\sqrt{2}}$

Q. 13 If the equation

$p x^{2}+(2-q) x y+3 y^{2}-6 q x+30 y+$ $6 q=0$ represents a circle, then the values of p and q are -
(A) 2, 2
(B) 3,1
(C) 3, 2
(D) 3,4
Q. 14 The circle represented by the equation
$x^{2}+y^{2}+2 g x+2 f y+c=0$ will be a point circle, if-
(A) $g^{2}+f^{2}=c$
(B) $\mathrm{g}^{2}+\mathrm{f}^{2}+\mathrm{c}=0$
(C) $\mathrm{g}^{2}+\mathrm{f}^{2}>\mathrm{c}$
(D) None of these
Q. 15 The equation of the circum-circle of the triangle formed by the lines $\mathrm{x}=$ $0, \mathrm{y}=0, \frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{b}}=1$, is -
(A) $x^{2}+y^{2}+a x-b y=0$
(B) $x^{2}+y^{2}-a x+b y=0$
(C) $x^{2}+y^{2}-a x-b y=0$
(D) $x^{2}+y^{2}+a x+b y=0$

Stretch Yourself

1. Determine the value of k for the equation $k\left(x^{2}+y^{2}\right)-x-y+k=0$ represents a real circle.
2. Find that point where the line $x=0$ touches the circle $x^{2}+y^{2}-2 x-6 y+$ $9=0$
3. Calculate the equation of the chord of contact of the circle $x^{2}+y^{2}+4 x$ $+6 y-12=0$ with respect to the point $(2,-3)$
4. The equation of the circle passing through the point $(1,1)$ and through the point of intersection of circles x^{2} $+y^{2}+13 x-3 y=0$ and $2 x^{2}+2 y^{2}+$ $4 x-7 y-25=0$
5. Calculate the length of tangent from the point $(5,1)$ to the circle $x^{2}+y^{2}$ $+6 x-4 y-3=0$

Answer to check your progress

$1 \mathrm{D} \quad 2 \mathrm{D} \quad 3 \mathrm{~A} \quad 4 \mathrm{~B} \quad 5 \mathrm{~B}$
6 A $7 \mathrm{~A} \quad 8 \mathrm{~A} \quad 9 \mathrm{C} \quad 10 \mathrm{C}$
$11 \mathrm{C} \quad 12 \mathrm{D} \quad 13 \mathrm{C} \quad 14 \mathrm{~A} \quad 15 \mathrm{~B}$

