## 2

## RELATIONS AND FUNCTIONS-I

## Cartesian product of Two Sets

Let $A=\{1,2\}, B=\{3,4,5\}$.

Set of all ordered pairs of elements of $A$ and $B$ is
$\{(1,3), \quad(1,4), \quad(1,5), \quad(2,3)$,
$(2,4),(2,5)\}$
$B \times A=\{(3,1),(3,2),(4,1),(4$,
2),(5, 1),(5, 2)\}
$A \times B$ and is called the Cartesian product of sets A and B. i.e.
$A \times B=\{(1,3),(1$,
4),(1, 5),(2, 3),(2,
$4),(2,5)\}$
Cartesian product of sets $B$ and $A$ is denoted by $B \times A$.

## In the set builder form:

$A \times B=\{(a, b): a \in A a n d b \in B\}$ and
$\mathrm{B} \times A=\{(b, a): b \in$ Banda $\in A\}$

## Number of elements in the

Cartesian product of two finite sets

| Number of elements |
| :--- |
| in Cartesian product |
| of two finite sets $A$ |
| and B i.e. $n(A \times B)=$ |
| $n(A) . n(B)$ |

Example
$A=\{1,2\}, B=\{x, y\}$
$A \times B$
$=\{(1, x),(2, x),(1, y)$
, (2,y)

## Cartesian product of the set of real numbers $\mathbf{R}$ with itself up to $\mathbf{R} \times \mathbf{R} \times$

## Ordered triplet

$A \times A \times A=\{(a, b, c): a, b$, $c \in A\}$

Here ( $a, b, c$ ) is called an ordered triplet.

A $\{1,2\}$ form the set
$A \times A \times A$
$=\{(1,1,1),(1,1,2),(1,2$,
1), $(1,2,2),(2,1,1),(2,1$ ,2),(2,2,1)(2,2,2\}

Here $(a, b, c)$ is called an ordered triplet. $R$ \}

## Relations

If $A$ and $B$ are two sets then a relation $R$ from $A$ to $B$ is a sub set of $A \times B$.,

If $R=\phi$ is called a void relation.
(ii) $\mathrm{R}=\mathrm{A} \times \mathrm{B}, \mathrm{R}$ is called a universal relation.
(iii) If R is a relation defined from A to A , it is called a relation defined on A.
(iv) $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}) \forall a \in A\}$, is called the identity relation

## Domain and Range of a Relation

If $R$ is a relation between two sets then the set of first elements (components) of all the ordered pairs of $R$ is called Domain and
set of 2nd elements of all the ordered pairs of R is called range, of the given relation

## Co-domain of a Relation

If $R$ is a relation from $A$ to $B$, then $B$ is called co domain of $R$.

For example, let $\mathrm{A}=\{1,3,4,5,7\}$ and $\mathrm{B}=\{2$, $4,6,8\}$ and $R$ be the relation 'is one less than' from $A$ to $B$, then $R=\{(1,2),(3,4),(5,6),(7$, 8 ) \} so co domain of $R=\{2,4,6,8\}$

## Function

Function is a special type of relation.
$\mathrm{F}: \mathrm{A} \rightarrow \mathrm{B}$ is a rule of correspondence from A to B such that to every element of $\mathrm{A} \exists$ a unique element in B


$$
\begin{aligned}
& A=\{a, b, c, d\} \\
& B=\{1,2,3\} \\
& f: A \rightarrow B \\
& =\{(a, 1)(b, 2)(c, 3)(d, 4)\}
\end{aligned}
$$

(i) the set B will be termed as co-domain and
(ii) (ii) the set $\{1,2,3,5\}$ is called the range. From the above we can conclude that range is a subset of co-domain.
(iii) Symbolically
$\mathrm{f}: \mathrm{A} \rightarrow \operatorname{Bor} A \rightarrow B$

## Real Valued Function of a real Variable

A function which has either R or one of its subsets as its range is called a real valued function. Further, if its domain is also either R or a subset of $R$, then it is called a real function.

GRAPHICAL
REPRESENTATION OF FUNCTIONS
$Y=X^{2}$

| $x$ | $y$ |
| :---: | :--- |
| 0 | 0 |
| 1 | 1 |
| -1 | 1 |
| 2 | 4 |
| -2 | 4 |
| 3 | 9 |
| -3 | 9 |
| 4 | 16 |
| -4 | 16 |



SOME SPECIAL FUNCTIONS

## Monotonic Function

$\mathrm{F}: \mathrm{A} \rightarrow B$ be a function then F is said to be monotonic on an interval $(\mathrm{a}, \mathrm{b})$ if it is either $\rightarrow$ Let F : A B increasing or decreasing on that interval.

- For function to be increasing on an interval (a,b)

$$
x_{1}<x_{2 \Rightarrow F\left(x_{1}\right)<F\left(x_{2}\right) \forall x_{1}} x_{2 \in(a, b)}
$$

- for function to be decreasing on $(a, b)$
$x_{1}>x_{2} \Rightarrow F\left(x_{1}\right)>F\left(x_{2}\right) \forall x_{1} x_{2} \in(a, b)$


## Even Function

A function is said to be an even function if for each $x$ of domain $F(-x)=F(x)$

## Odd Function

A function is said to be an odd function if for each x
$f(-x)=-f(x)$

## Greatest Inter Function

$F(x)=[x]$ which is the greatest integer less than or equal to $\mathrm{xf}(\mathrm{x})$ is called Greatest Integer Function

## Polynomial Function

Any function defined in the form of a polynomial is called a polynomial function.

## Rational Function

Function of the type $\mathrm{f}(\mathrm{x})=\frac{g(x)}{h(x)}$, where $\mathrm{h}(\mathrm{x}) \neq 0$ and $g(x)$ and $h(x)$ are polynomial functions are called rational functions.

## Reciprocal Function:

Functions of the type $y=\frac{1}{x}, x \neq 0$ is called a reciprocal function.

## Exponential Function

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots \cdots \cdots \cdot \frac{x^{n}}{n!} \cdots
$$

This is called exponential theorem, infinite series is called the exponential series.
$\mathrm{f}(\mathrm{x})=e^{x}$, where x is any real number is called exponential function

## Logarithmic Functions

$$
\begin{gathered}
y=e^{x} \text { or } x=\log _{e} y \\
y=\log _{e} x
\end{gathered}
$$

## Identity Function

Let $R$ be the set of real numbers. Define the real valued functionf: $R \rightarrow R$ by $y=f(x)=x$. for each $\mathrm{x} \in R$.Such a function is called the identity function

## Constant Function

The function $f: R \rightarrow R$ by $y=f(x)=c, x \in R$ where $c$ is constant and each $x \in R$

## Signum Function



The function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)$ $=\left\{\begin{array}{l}1 \text { if } x>0 \\ 0 \text { if } x=0 \\ -1 \text { if } x<0\end{array} \quad\right.$ is called signum function. The domain of the signum function is $R$ and the range is the set $\{-1,0,1\}$.

## Sum, difference, product and quotient of functions

## Addition of two real functions:

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{X} \rightarrow$ $R$ be any two function, where $X \subset R$, Then ( $f+$ g) $: X \rightarrow R$ by
$(f+g)(x)=f(x)+g(x)$, for all $x \in X$

## Example

$F(x)=x^{2}, g(x)=2 x+1$
$(f+g)(x)=f(x)+g(x)$
$=x^{2}+2 x+1$
(ii) Subtraction of a real function

| Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{X} \rightarrow$ | Example |
| :---: | :---: |
| $R$ be any two functions, where $X \subset R$, Then | $F(x)=x^{2}, g(x)=2 x+1$ |
| $(\mathrm{f}-\mathrm{g}): \mathrm{X} \rightarrow \mathrm{R} \text { by }$ | $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$ |
| $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$, for all $x \in X$ | $=x^{2}-2 x-1$ |

(iv) Multiplication of two real functions :

| Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{X}$ | Example |
| :---: | :---: |
| $\rightarrow R$ be any two functions, where $X \subset$ | $F(x)=x^{2}, g(x)=2 x+1$ |
| $R$, Then | $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$ |
| $(\mathrm{fg}): \mathrm{X} \rightarrow \mathrm{R}$ by | $=2 x^{3}+x^{2}$ |
| $\begin{aligned} & (f g)(x)=f(x) g(x) \text {, } \\ & \text { for all } x \in X \end{aligned}$ |  |

Quotient of two real functions

| Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{X} \rightarrow$ | Example |
| :---: | :---: |
| $R$ be any two functions, where $X \subset$ | $F(x)=x^{2}, g(x)=2 x+1$ |
| R , Then | $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$ |
| ( $\mathrm{f} / \mathrm{g}$ ) : $\mathrm{X} \rightarrow \mathrm{R}$ by | $=x^{2} / 2 x+1$ |
| $\begin{aligned} & (f g)(x)=f(x) / g(x) \text {, } \\ & \text { for all } x \in X \end{aligned}$ |  |

## Check your Progress

Q1 Let $\mathrm{A}=\{1,2,3,4,6\}$ and R be the relation on A defined by

Q 1 If $n(A)=3$, and $n(B)=5$, then
$n(A \times B)$ is equal to:
(A) 8
(B) 15
(C) 5
(D) 3

Q 2 In relation $\mathrm{R}=\{(1,3),(2,6)(3,9)$, $(4,12)\}$ The domain of $R$ is:
(A) $\{1,2,3,4\}$
(B) $\{3,6,9,12\}$

Q 3 If $(x-3, y+4)=(5-x, 4+y)$, then the value of $x$ is equal to:
(A) 2
(B) 4
(C) 8
(D) 6

Q 4 The total number of relations from a set consisting of ' $m$ ' elements to a set consisting of ' $n$ ' elements is equal to
(A) $m+n$
(B) $m n$
(C) $2^{m n}$
(D) $m-n$

Q5 If the function is in the form of $f(-x)=-f(x)$, then the function is:
(A) Negative function
(B) Odd function
(C) Even function
(D) Step Function

## Stretch yourself

$R=\{(a, b): a, b \in A$ and $a$ divides $b\}$
(i) Write R in roster form
(ii) Find Domain \& Range of $R$

Q2 Let $A=\{7,9,11\}, B=\{13,15,17\}$ and $R=\{(x, y): x \in A \& y \in B, x-y$ is odd $\}$

Show that relation ' R ' is an empty relation
Q3 If $A=\{1,2\}, B=\{a, b\}$ find out total number of possible relations from $A$ to B

Q4 Find the domain and range of relation $R$, where
$R=\left\{(x, y): y=x+\frac{8}{x}, x, y \in N, x<9\right\}$
Draw the graph of modulus function
and find out domain and range of modulus function.

## Answer to check yourself

Q1 B
Q2 A
Q3 B
Q4 C
Q5 B

## Answer to stretch yourself

Q1 (i) $\quad \mathrm{R}=\{(1,1),(1,2),(1,3),(1,4)$, $(1,5),(1,6),(2,2),(2,4),(2,6)$, $(3,3),(3,6),(4,4),(6,6)\}$
(ii) Domain $=\{1,2,3,4,6\}$

$$
\text { Range }=\{1,2,3,4,6\}
$$

Q2 Let $A \times B=\{(7,13),(7,15),(7,17)$, $(9,13),(9,17),(11,13),(11,15)$, $(11,17)$ \}
None of the order pair is showing that first minus second component is odd.
Hence the relation is an empty
relation.
Q3 Total number of possible relation are $2^{4}$ i.e. 16 .

Q4 Domain $=\{1,2,4,8\}$
Range $=\{9,6\}$
Q5 In modulus function
Domain is $(-\infty, \infty)$
Range is $(0, \infty)$

