2

RELATIONS AND FUNCTIONS-I

Cartesian product of Two Sets

Let A={1, 2}, B= {3, 4, 5}.	A × B and is called
Set of all ordered pairs of elements of A and B is {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)} B ×A = {(3, 1),(3, 2),(4, 1),(4,	the Cartesian product of sets A and B. i.e. A×B ={(1, 3), (1, 4),(1, 5),(2, 3),(2, 4),(2, 5)}
2),(5, 1),(5, 2)}	Cartesian product of sets B and A is denoted by B×A.

In the set builder form:

 $A \times B = \{(a, b): a \in A and b \in B\}$ and

 $B \times A = \{(b, a): b \in Banda \in A\}$

Number of elements in the Cartesian product of two finite sets

Example
A = {1,2},B ={x,y}
A ×B
={(1,x),(2,x),(1,y)
,(2,y)

Cartesian product of the set of real numbers R with itself up to R × R ×

Ordered triplet	A {1, 2} form the set
A × A × A = {(a, b, c) : a, b,	A ×A ×A
c∈ A }	={(1,1,1),(1,1,2),(1,2,
Here (a, b, c) is called an ordered triplet.	1),(1,2,2),(2,1,1),(2,1 ,2),(2,2,1)(2,2,2}

Here (a, b, c) is called an ordered triplet. R}

Relations

If A and B are two sets then a relation R from A toB is a sub set of $A{\times}B.\,$,

If $R = \phi$ is called a void relation.

(ii) $R=A \times B$, R is called a universal relation.

(iii) If R is a relation defined from A to A, it is called a relation defined on A.

(iv) $R = \{(a,a) \forall a \in A\}$, is called the identity relation

Domain and Range of a Relation

If R is a relation between two sets then the set of first elements (components) of all the ordered pairs of R is called Domain and

set of 2nd elements of all the ordered pairs of R is called range, of the given relation

Co-domain of a Relation

If R is a relation from A to B, then B is called co domain of R.

For example, let A = $\{1, 3, 4, 5, 7\}$ and B = $\{2, 4, 6, 8\}$ and R be the relation 'is one less than' from A to B, then R = $\{(1, 2), (3, 4), (5, 6), (7, 8)\}$ so co domain of R = $\{2, 4, 6, 8\}$

Function

1

Function is a special type of relation.

Mathematics (311)

 $F:A \rightarrow B$ is a rule of correspondence from A to B such that to every element of A \exists a unique element in B

- (i) the set B will be termed as co-domain and
- (ii) (ii) the set {1, 2, 3, 5} is called the range. From the above we can conclude that range is a subset of co-domain.
- (iii) Symbolically

$$f: A \rightarrow BorA \rightarrow B$$

Real Valued Function of a real Variable

A function which has either R or one of its subsets as its range is called a real valued function. Further, if its domain is also either R or a subset of R, then it is called a real function.

GRAPHICAL REPRESENTATION OF FUNCTIONS

 $Y = X^2$

x	у
0	0
1	1
-1	1
2	4
-2	4
3	9
-3	9
4	16
-4	16

SOME SPECIAL FUNCTIONS

Monotonic Function

 $F:A \rightarrow B$ be a function then F is said to be monotonic on an interval (a,b) if it is either \rightarrow Let F:AB increasing or decreasing on that interval.

• For function to be increasing on an interval (a,b)

 $x_1 < x_{2 \Rightarrow F(x_1) < F(x_2) \forall x_1} x_{2 \in (a,b)}$

• for function to be decreasing on (a,b)

 $x_1 > x_2 \Rightarrow F(x_1) > F(x_2) \forall x_1 x_2 \in (a, b)$

Even Function

A function is said to be an even function if for each x of domain F(-x) = F(x)

Odd Function

A function is said to be an odd function if for each x

f(-x) = -f(x)

Greatest Inter Function

F(x) = [x] which is the greatest integer less than or equal to x f(x) is called Greatest Integer Function

Polynomial Function

Any function defined in the form of a polynomial is called a polynomial function.

Rational Function

Function of the type $f(x) = \frac{g(x)}{h(x)}$, where $h(x) \neq 0$ and g(x) and h(x) are polynomial functions are called rational functions.

Reciprocal Function:

Functions of the type $y=\frac{1}{x}$, $x \neq 0$ is called a reciprocal function.

Exponential Function

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

This is called exponential theorem, infinite series is called the exponential series.

 $f(x) = e^x$, where x is any real number is called exponential function

Logarithmic Functions

$$y = e^x$$
 or $x = \log_e y$

$$y = \log_e x$$

Identity Function

Let R be the set of real numbers. Define the real valued function $f: R \rightarrow R$ by y = f(x)=x. for each $x \in R$. Such a function is called the identity function

Constant Function

The function f: $R \rightarrow R$ by y=f(x)=c, $x \in R$ where c is constant and each $x \in R$

Signum Function

Sum, difference, product and quotient of functions

Addition of two real functions:

Let f:X \rightarrow R and g: X \rightarrow	Example
R be any two function,	$F(x) = x^2, g(x) = 2x + 1$
where X \subset R, Then (f +	F(x) = x , g(x) = 2x + 1
g) : $X \rightarrow R$ by	(f +g)(x) = f(x)+g(x)
$(f+g)(x)=f(x)+g(x),$ for all $x\in X$	$=x^{2}+2x+1$

(ii) Subtraction of a real function

Let f:X ${\rightarrow}R$ and g: X ${\rightarrow}$	Example
R be any two functions, where X \subset R, Then	F(x) =x ² , g(x) =2x+1
(f - g): $X \rightarrow R$ by	(f -g) (x) = f(x)- g (x)
(f - g)(x) = f(x) - g(x), for	$=x^{2}-2x-1$
all $x \in X$	

(iv) Multiplication of two real functions :

Example
$F(x) = x^2, g(x) = 2x+1$
F(x) = x, g(x) = 2x + 1
(f g)(x) = f(x) g (x)
$=2x^3 + x^2$

Quotient of two real functions

Check your Progress

Q 1 If n(A) = 3, and n(B) = 5, then

 $n(A \times B)$ is equal to:

- (A) 8
- (B) 15
- (C) 5
- (D) 3
- Q 2 In relation R = {(1,3), (2,6) (3,9), (4,12)} The domain of *R* is: (A) {1,2,3,4}
 - (B) $\{3,6,9,12\}$
- Q 3 If (x-3, y+4) = (5-x, 4+y), then the value of x is equal to:
 - (A) 2
 - (B) 4
 - (C) 8
 - (D) 6

- Q 4 The total number of relations from a set consisting of 'm' elements to a set consisting of 'n' elements is equal to
 - (A) m+n
 - (B) *mn*
 - (C) 2^{mn}
 - (D) m n
- Q5 If the function is in the form of f(-x) = -f(x), then the function is:
 - (A) Negative function
 - (B) Odd function
 - (C) Even function
 - (D) Step Function

Stretch yourself

Q1 Let $A = \{1,2,3,4,6\}$ and R be the relation on A defined by

 $R = \{(a,b) : a, b \in A \text{ and } a \text{ divides } b\}$

- (i) Write R in roster form
- (ii) Find Domain & Range of *R*
- Q2 Let $A = \{7, 9, 11\}, B = \{13, 15, 17\}$ and

 $R = \{(x, y) : x \in A \& y \in B, x - y \text{ is odd}\}$ Show that relation 'R' is an empty relation

- Q3 If $A = \{1,2\}$, $B = \{a,b\}$ find out total number of possible relations from A to B
- Q4 Find the domain and range of relation R, where

$$R = \left\{ (x, y) : y = x + \frac{8}{x}, x, y \in N, x < 9 \right\}$$

Q5 Draw the graph of modulus function

Mathematics (311)

and find out domain and range of modulus function.

Answer to check yourself	
Q1 B	
Q2 A	
Q3 B	
Q4 C	
Q5 B	

Answer to stretch yourself

- Q1 (i) $R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (6,6)\}$
 - (ii) Domain = $\{1,2,3,4,6\}$ Range = $\{1,2,3,4,6\}$
- Q2 Let $A \times B = \{(7,13), (7,15), (7,17), (9,13), (9,17), (11,13), (11,15), (11,17)\}$ None of the order pair is showing that first minus second component is odd. Hence the relation is an empty relation.
- Q3 Total number of possible relation are 2^4 i.e. 16.
- Q4 Domain = $\{1,2,4,8\}$ Range = $\{9,6\}$
- Q5 In modulus function Domain is $(-\infty, \infty)$ Range is $(0, \infty)$