20

Matrices

Definition

A rectangular arrangement of numbers in rows and columns, is called a Matrix. This arrangement is enclosed by small () or big [] brackets. A matrix is represented by capital letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$ etc. and its element are by small letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ etc.

Order of Matrix

A matrix which has m rows and n columns is called a matrix of order $m \times n$.

A matrix A of order $\mathrm{m} \times \mathrm{n}$ is usually written in the following manner-
$A=\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots a_{1 j} & \ldots a_{1 n} \\ a_{21} & a_{23} & a_{23} & \ldots a_{2 j} & \ldots a_{2 n} \\ \ldots . . & \ldots . . & \ldots . . & \ldots . . & \ldots . . \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots a_{i j} & \ldots a_{i n} \\ \ldots . . & \ldots . . & \ldots . . & \ldots . . & \ldots . . \\ a_{m 1} & a_{m 2} & a_{m 3} & \ldots a_{m j} & \ldots a_{m n}\end{array}\right]$ or
$A=\left[a_{i j}\right] m \times n$ where $\begin{array}{ll}i=1, & 2, \ldots \ldots . m \\ i=1, & 2, \ldots \ldots . n\end{array}$
Here $a_{i j}$ denotes the element of $i^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column.
Types of Matrix
Row matrix :If in a Matrix, there is only one row, then it is called a Row Matrix.
Thus $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a row matrix if $\mathrm{m}=$ 1.

Column Matrix :

If in a Matrix, there is only one column, then it is called a Column Matrix.
Thus $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a Column Matrix if $\mathrm{n}=1$.

Square Matrix If number of rows and number of column in a Matrix are
equal, then it is called a Square Matrix.
Thus $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a Square Matrix if $\mathrm{m}=\mathrm{n}$

Singleton Matrix :

If in a Matrix there is only one element then it is called Singleton Matrix. Thus
$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a Singleton Matrix if $\mathrm{m}=$ $\mathrm{n}=1$.

Null or Zero Matrix :

If in a Matrix all the elements are zero then it is called a zero Matrix and it is generally denoted by O .
Thus $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a zero matrix if $\mathrm{a}_{\mathrm{ij}}=$ 0 for all i and j .

Diagonal Matrix :

If all elements except the principal diagonal in a Square Matrix are zero, it is called a Diagonal Matrix. Thus a Square Matrix
$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is a Diagonal Matrix if $\mathrm{a}_{\mathrm{ij}}=0$, when $\mathrm{i} \neq \mathrm{j}$

Scalar Matrix :

If all the elements of the diagonal of a diagonal matrix are equal, it is called a scalar matrix. Thus a Square Matrix A = $\left[\mathrm{a}_{\mathrm{ij}}\right]$ is a Scalar Matrix is
$\mathrm{a}_{\mathrm{ij}}=\left\{\begin{array}{ll}0 & \mathrm{i} \neq \mathrm{j} \\ \mathrm{k} & \mathrm{i}=\mathrm{j}\end{array}\right.$ where k is a constant.

Unit Matrix :

If all elements of principal diagonal in a Diagonal Matrix are 1, then it is called

Unit Matrix. A unit Matrix of order n is denoted by In.

Thus a square Matrix

$$
\begin{aligned}
& A=\left[a_{i j}\right] \text { is a unit Matrix if } \\
& a_{i j}= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases}
\end{aligned}
$$

Equal Matrix :

Two Matrix A and B are said to be equal Matrix if they are of same order and their corresponding elements are equal.

Addition and subtraction of matrix

If $\mathrm{A}\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ and $\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ are two matrices of the same order then their sum $\mathrm{A}+\mathrm{B}$ is a matrix whose each element is the sum of corresponding element.
i.e. $\quad A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}$

Similarly their subtraction $A-B$ is defined as

$$
\mathrm{A}-\mathrm{B}=\left[\mathrm{a}_{\mathrm{ij}}-\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}
$$

Properties of Matrices addition :

If A, B and C are Matrices of same order, then-
(i) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}($ Commutative Law)
(ii) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$
(Associative Law)
(iii) $\mathrm{A}+\mathrm{O}=\mathrm{O}+\mathrm{A}=\mathrm{A}$, where O is zero matrix which is additive identity of the matrix.
(iv) $\mathrm{A}+(-\mathrm{A})=0=(-\mathrm{A})+\mathrm{A}$ where $(-$ A) is obtained by changing the sign of every element of A which is additive inverse of the Matrix
obtained by multiplying every element of A by k is called scalar multiplication of A by k and it is denoted by
kA thus if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ then

$$
\mathrm{kA}=\mathrm{Ak}=\left[\mathrm{ka}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}
$$

Properties of Scalar Multiplication :

If A, B are Matrices of the same order and α, μ are any two scalars then -
(i) $\alpha(\mathrm{A}+\mathrm{B})=\alpha \mathrm{A}+\alpha \mathrm{B}$
(ii) $\alpha(\mu \mathrm{A})=(\alpha \mu) \mathrm{A}=\mu(\alpha \mathrm{A})$

Multiplication of matrices

If A and B be any two matrices, then their product AB will be defined only when number of column in A is equal to the number of rows in B. If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{p}}$ then their product $\mathrm{AB}=\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]$, will be matrix of order $\mathrm{m} \times \mathrm{p}$, where

$$
(\mathrm{AB})_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ij}}=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ir}} \mathrm{~b}_{\mathrm{rj}}
$$

6.1 Properties of Matrix Multiplication :

If A, B and C are three matrices such that their product is defined, then
(i) $\mathrm{AB} \neq \mathrm{BA}$ (Generally notcommutative)
(ii) (AB) $\mathrm{C}=\mathrm{A}(\mathrm{BC})$ (Associative Law)
(iii) $\mathrm{IA}=\mathrm{A}=\mathrm{AI}$

I is identity matrix for matrix multiplication
(iv) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC} \quad$ (Distributive Law)

Transpose of a Matrix

The matrix obtained from a given matrix A by changing its rows into columns or

Scalar multiplication of matrix

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{i}}\right]_{\mathrm{m}} \times{ }_{\mathrm{n}}$ be a matrix and k be a number then the matrix which is
columns into rows is called transpose of Matrix A and is denoted by A^{T} or A^{\prime}.
If order of A is $m \times n$, then order of A^{T} is n $\times \mathrm{m}$.

Properties of Transpose :

(i) $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
(ii) $(\mathrm{A} \pm \mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \pm \mathrm{B}^{\mathrm{T}}$
(iii) $(\mathrm{AB})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$
(iv) $(\mathrm{kA})^{\mathrm{T}}=\mathrm{k}(\mathrm{A})^{\mathrm{T}}$

Symmetric Matrix : A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is called symmetric matrix if $\mathrm{a}_{\mathrm{ij}}=$ $\mathrm{a}_{\mathrm{j} i}$ for all i, j or $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$
Skew - Symmetric Matrix : A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is called skew symmetric matrix if $a_{i j}=-a_{j i}$ for all i, j or $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$
Every square matrix A can uniquelly be expressed as sum of a symmetric and skew symmetric matrix i.e.

$$
\mathrm{A}=\left[\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)\right]+\left[\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right)\right]
$$

Inverse of Matrices

If A and B are two matrices such that

$$
\mathrm{AB}=\mathrm{I}=\mathrm{BA}
$$

then B is called the inverse of A and it is denoted by A^{-1}, thus

$$
\begin{gathered}
\mathrm{A}^{-1}=\mathrm{B} \Leftrightarrow \mathrm{AB}=\mathrm{I}=\mathrm{BA} \\
\mathrm{~A}^{-1}=\frac{\operatorname{adjA}}{|\mathrm{A}|}
\end{gathered}
$$

Thus A^{-1} exists $\Leftrightarrow|\mathrm{A}| \neq 0$

Properties of Inverse Matrix :

Let A and B are two invertible matrices of the same order, then
(i) $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$
(ii) $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
(iii) $\operatorname{adj}\left(\mathrm{A}^{-1}\right)=(\operatorname{adj} \mathrm{A})^{-1}$
(iv) $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$
(v) $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}=|\mathrm{A}|^{-1}$

Check Your Progress

1 If A is a matrix of order 3×4, then each row of A has-
(A) 3 elements
(B) 4 elements
(C) 12 elements
(D) 7 elements

2 In the following, upper triangular matrix is-
(A) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 3\end{array}\right]$
(B) $\left[\begin{array}{lll}5 & 4 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{lll}0 & 2 & 3 \\ 0 & 0 & 4\end{array}\right]$
(D) $\left[\begin{array}{ll}2 & 1 \\ 0 & 3 \\ 0 & 0\end{array}\right]$

3 In the following, singular matrix is-
(A) $\left[\begin{array}{ll}2 & 3 \\ 1 & 3\end{array}\right]$
(B) $\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$
(D) $\left[\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right]$

4 If $\mathrm{A}=\left[\begin{array}{ll}5 & 2 \\ 1 & 0\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}2 & 3 \\ 5 & -1\end{array}\right]$, then $|2 \mathrm{~A}-3 \mathrm{~B}|$ equals-
(A) 77
(B) -53
(C) 53
(D) -77

5 If A and B are matrices of order $\mathrm{m} \times \mathrm{n}$ and $\mathrm{n} \times \mathrm{n}$ respectively, then which of the following are defined-
(A) AB, BA
(B) $\mathrm{AB}, \mathrm{A}^{2}$
(C) $\mathrm{A}^{2}, \mathrm{~B}^{2}$
(D) $\mathrm{AB}, \mathrm{B}^{2}$

6 If $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]$ and $A^{2}+k I=8 A$, then k equals
(A) 4
(B) 8
(C) $1 / 4$
(D) $1 / 16$

7 If A,B,C are matrices of order $1 \times 3,3$ $\times 3$ and 3×1 respectively, the order of ABC will be-
(A) 3×3
(B) 1×3
(C) 1×1
(D) 3×1

8 If $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$, then-
(A) $\mathrm{AB}=0$
(B) $\mathrm{AB}=2 \mathrm{I}$
(C) $\mathrm{BA}=0$
(D) $\mathrm{B}^{2}=\mathrm{I}$

9 If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 4 \\ 2 & -2\end{array}\right]$, then $(\mathrm{AB})^{\mathrm{T}}$ is-
(A) $\left[\begin{array}{cc}11 & -2 \\ 5 & -6\end{array}\right]$
(B) $\left[\begin{array}{cc}11 & 5 \\ -2 & -6\end{array}\right]$
(C) $\left[\begin{array}{cc}7 & 1 \\ 0 & -8\end{array}\right]$
(D) $\left[\begin{array}{cc}7 & 0 \\ 1 & -8\end{array}\right]$

10 If A and B are matrices of order m $\times \quad \mathrm{n}$ and $\mathrm{n} \times \mathrm{m}$ respectively, then the order of matrix $\mathrm{B}^{\mathrm{T}}\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}$ is -
(A) $m \times n$
(B) $\mathrm{m} \times \mathrm{m}$
(C) $n \times n$
(D) Not defined

11 If $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are three matrices, then $\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}+\mathrm{C}^{\mathrm{T}}$ is -
(A) zero matrix
(B) $\mathrm{A}+\mathrm{B}+\mathrm{C}$
(C) $-(\mathrm{A}+\mathrm{B}+\mathrm{C})$
(D) $(\mathrm{A}+\mathrm{B}+\mathrm{C})^{\mathrm{T}}$

12 If $\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}-1 & 2 \\ -1 & 1\end{array}\right]$, then correct statement is -
(A) $\mathrm{AB}=\mathrm{BA}$
(B) $\mathrm{AA}^{T}=\mathrm{A}^{2}$
(C) $\mathrm{AB}=\mathrm{B}^{2}$
(D) None of these

13 If $\mathrm{A}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then AA^{T} equals-
(A) $\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
(B) $\left[\begin{array}{cc}\cos ^{2} \theta & \sin ^{2} \theta \\ \sin ^{2} \theta & \cos ^{2} \theta\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

14 Matrix $\left[\begin{array}{ccc}0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0\end{array}\right]$ is a-
(A) Diagonal matrix
(B) Upper triangular matrix
(C) Skew-symmetric matrix
(D) Symmetric matrix

15 If A and B are square matrices of same order, then which of the following is skew-symmetric-
(A) $\frac{A+A^{T}}{2}$
(B) $\frac{A^{T}+B^{T}}{2}$
(C) $\frac{\mathrm{A}^{\mathrm{T}}-\mathrm{B}^{\mathrm{T}}}{2}$
(D) $\frac{B-B^{T}}{2}$

Stretch Yourself

1. Find the inverse matrix of $\left[\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right]$
2. If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 0 & 2\end{array}\right]$, then find the value of $\operatorname{adj}(\operatorname{adj} A)$ is-
3. If $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and X is a matrix such that $A=B X$, then find the value of X

Hint to Check Your Progress

$1 \mathrm{~B}, 2 \mathrm{~B}, 3 \mathrm{D}, 4 \mathrm{~B}, 5 \mathrm{D}, 6 \mathrm{~B}, 7 \mathrm{C}$,
8 A, 9C, $10 \mathrm{D}, 11 \mathrm{D}, 12 \mathrm{D}, 13 \mathrm{C}, 14 \mathrm{C}$,15 D,

