Senior Secondary Course Learner's Guide, Mathematics (311)

20

Matrices

Definition

A rectangular arrangement of numbers in rows and columns, is called a Matrix. This arrangement is enclosed by small () or big [] brackets. A matrix is represented by capital letters A, B, C etc. and its element are by small letters a, b, c, x, y etc.

Order of Matrix

A matrix which has m rows and n columns is called a matrix of order $m \times n$.

A matrix A of order $m \times n$ is usually written in the following manner-

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots a_{1j} & \dots a_{1n} \\ a_{21} & a_{23} & a_{23} & \dots a_{2j} & \dots a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots a_{ij} & \dots a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots a_{mj} & \dots a_{mn} \end{bmatrix} \text{ or }$$

$$A = [a_{ij}]_{m} \times n \text{ where } \begin{array}{c} i = 1, & 2, \dots .m \\ i = 1, & 2, \dots .m \end{array}$$

Here a_{ij} denotes the element of i^{th} row and j^{th} column.

Types of Matrix

Row matrix :If in a Matrix, there is only one row, then it is called a Row Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a row matrix if m = 1.

Column Matrix :

If in a Matrix, there is only one column, then it is called a Column Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a Column Matrix if n = 1.

Square Matrix If number of rows and number of column in a Matrix are

equal, then it is called a Square Matrix. Thus $A = [a_{ij}]_{m \times n}$ is a Square Matrix if m = n

Singleton Matrix :

If in a Matrix there is only one element then it is called Singleton Matrix. Thus

 $A = [a_{ij}]_{m \times n} \text{ is a Singleton Matrix if } m = n = 1.$

Null or Zero Matrix :

If in a Matrix all the elements are zero then it is called a zero Matrix and it is generally denoted by O.

Thus $A = [a_{ij}]_{m \times n}$ is a zero matrix if $a_{ij} = 0$ for all i and j.

Diagonal Matrix :

If all elements except the principal diagonal in a **Square Matrix** are zero, it is called a Diagonal Matrix. Thus a Square Matrix

A = $[a_{ij}]$ is a Diagonal Matrix if $a_{ij} = 0$, when $i \neq j$

Scalar Matrix :

If all the elements of the diagonal of a **diagonal matrix** are equal, it is called a scalar matrix. Thus a Square Matrix $A = [a_{ij}]$ is a Scalar Matrix is

 $a_{ij} = \begin{cases} 0 & i \neq j \\ k & i = j \end{cases} \text{ where } k \text{ is a constant.}$

Unit Matrix :

If all elements of principal diagonal in a **Diagonal Matrix** are 1, then it is called

Unit Matrix. A unit Matrix of order n is denoted by I_n .

Thus a square Matrix

 $A = [a_{ij}]$ is a unit Matrix if

$$a_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Equal Matrix :

Two Matrix A and B are said to be equal Matrix if they are of same order and their corresponding elements are equal.

Addition and subtraction of matrix

If A $[a_{ij}]_{m \times n}$ and $[b_{ij}]_{m \times n}$ are two matrices of the same order then their sum A + B is a matrix whose each element is the sum of corresponding element.

i.e. $A + B = [a_{ij} + b_{ij}]_{m \times n}$

Similarly their subtraction A - B is defined as

 $A - B = [a_{ij} - b_{ij}]_{m \times n}$

Properties of Matrices addition :

If A, B and C are Matrices of same order, then-

- (i) A + B = B + A (Commutative Law)
- (ii) (A+B) + C = A + (B+C)

(Associative Law)

- (iii) A + O = O + A = A, where O is zero matrix which is additive identity of the matrix.
- (iv)A + (A) = 0 = (-A) + A where (A) is obtained by changing the sign of every element of A which is additive inverse of the Matrix

Scalar multiplication of matrix

Let $A = [a_{ij}]_{m \times n}$ be a matrix and k be a number then the matrix which is obtained by multiplying every element of A by k is called scalar multiplication of A by k and it is denoted by

kA thus if $A = [a_{ij}]_{m \times n}$ then

 $kA = Ak = [ka_{ij}]_{m \times n}$

Properties of Scalar Multiplication :

If A, B are Matrices of the same order and α , μ are any two scalars then -

(i)
$$\alpha$$
 (A + B) = α A + α B

(ii) α (μ A) = (α μ) A = μ (α A)

Multiplication of matrices

If A and B be any two matrices, then their product AB will be defined only when number of column in A is equal to the number of rows in B. If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$ then their product $AB = C = [c_{ij}]$, will be matrix of order m \times p, where

$$(AB)_{ij} = C_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}$$

6.1 Properties of Matrix Multiplication :

If A, B and C are three matrices such that their product is defined, then

(i) $AB \neq BA$ (Generally

notcommutative)

(ii) (AB) C = A (BC) (Associative Law)

(iii)IA = A = AI

I is identity matrix for matrix multiplication

(iv)A (B + C) = AB + AC (Distributive Law)

Transpose of a Matrix

The matrix obtained from a given matrix A by changing its rows into columns or

Senior Secondary Course Learner's Guide, Mathematics (311)

columns into rows is called transpose of Matrix A and is denoted by A^{T} or A'.

If order of A is $m \times n$, then order of A^T is $n \times m$.

Properties of Transpose :

(i)
$$(A^{T})^{T} = A$$

(ii) $(A \pm B)^{T} = A^{T} \pm B^{T}$
(iii) $(AB)^{T} = B^{T} A^{T}$
(iv) $(kA)^{T} = k(A)^{T}$

Symmetric Matrix : A square matrix $A = [a_{ij}]$ is called symmetric matrix if $a_{ij} = a_{ji}$ for all i,j or $A^T = A$

Skew - Symmetric Matrix : A square matrix $A = [a_{ij}]$ is called skew symmetric matrix if $a_{ij} = -a_{ji}$ for all i, j or $A^T = -A$

Every square matrix A can uniquelly be expressed as sum of a symmetric and skew symmetric matrix i.e.

$$\mathbf{A} = \left[\frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathrm{T}})\right] + \left[\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathrm{T}})\right]$$

Inverse of Matrices

If A and B are two matrices such that

AB = I = BA

then B is called the inverse of A and it is denoted by A^{-1} , thus

$$A^{-1} = B \Leftrightarrow AB = I = BA$$
$$A^{-1} = \frac{\text{adj}A}{|A|}$$

Thus A^{-1} exists $\Leftrightarrow |A| \neq 0$

Properties of Inverse Matrix :

Let A and B are two invertible matrices of the same order, then

i)
$$(A^T)^{-1} = (A^{-1})^T$$

(ii)
$$(AB)^{-1} = B^{-1} A^{-1}$$

(iii) adj $(A^{-1}) = (adj A)^{-1}$
(iv) $(A^{-1})^{-1} = A$
(v) $|A^{-1}| = \frac{1}{|A|} = |A|^{-1}$

Check Your Progress

1 If A is a matrix of order 3×4 , then each row of A has-

- (A) 3 elements (B) 4 elements
- (C) 12 elements (D) 7 elements

2 In the following, upper triangular matrix is-

$$(A)\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 3 \end{bmatrix} \qquad (B)\begin{bmatrix} 5 & 4 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
$$(C)\begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} \qquad (D)\begin{bmatrix} 2 & 1 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$$

3 In the following, singular matrix is-

$(A)\begin{bmatrix}2 & 3\\1 & 3\end{bmatrix}$	$(B)\begin{bmatrix}3&2\\2&3\end{bmatrix}$
$(\mathbf{C})\begin{bmatrix}1&2\\1&0\end{bmatrix}$	$(D)\begin{bmatrix}2 & 3\\4 & 6\end{bmatrix}$

4 If $A = \begin{bmatrix} 5 & 2 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$, then |2A - 3B| equals-(A) 77 (B) -53 (C) 53 (D) -77

Mathematics, (311)

- 5 If A and B are matrices of order m × n and n × n respectively, then which of the following are defined-
 - $(A) AB, BA \qquad (B) AB, A^2$
 - (C) A^2 , B^2 (D) AB, B^2

6 If A =
$$\begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$$
 and A² + kI = 8A, then
k equals
(A) 4 (B) 8

()	(-) -
(C) 1/4	(D) 1/16

- 7 If A,B,C are matrices of order 1 × 3, 3
 × 3 and 3 × 1 respectively, the order of ABC will be-
 - (A) 3×3 (B) 1×3 (C) 1×1 (D) 3×1
 - 8 If $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$, then-(A) AB = 0 (B) AB = 2I(C) BA = 0 (D) $B^2 = I$ 9 If $A = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 2 & -2 \end{bmatrix}$, then (AB)T is-(A) $\begin{bmatrix} 11 & -2 \\ 5 & -6 \end{bmatrix}$ (B) $\begin{bmatrix} 11 & 5 \\ -2 & -6 \end{bmatrix}$ (C) $\begin{bmatrix} 7 & 1 \\ 0 & -8 \end{bmatrix}$ (D) $\begin{bmatrix} 7 & 0 \\ 1 & -8 \end{bmatrix}$

 $\begin{array}{ccc} \textbf{10} & \text{If A and B are matrices of order m} \\ \times & n & \text{and} \\ n \times m \text{ respectively, then the order of} \\ matrix \ B^T \ (A^T)^T \text{ is -} \end{array}$

$(A) m \times n$	(B) $m \times m$
(C) $n \times n$	(D) Not defined

11 If A, B, C, are three matrices, then $A^{T} + B^{T} + C^{T}$ is -	
(A) zero matrix (B) $A + B + C$	
$(C) - (A + B + C)$ (D) $(A + B + C)^{T}$	
12 If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$, then	
correct statement is -	
$(A) AB = BA \qquad (B) AA^{T} = A^{2}$	
(C) $AB = B^2$ (D) None of these	
3 If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then AA^T	
equals-	
$(A) \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$	
(B) $\begin{bmatrix} \cos^2 \theta & \sin^2 \theta \\ \sin^2 \theta & \cos^2 \theta \end{bmatrix}$	
$(\mathbf{C})\begin{bmatrix}1&0\\0&1\end{bmatrix}$	
$(D) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	
14 Matrix $\begin{bmatrix} 0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0 \end{bmatrix}$ is a-	
(A) Diagonal matrix	
(B) Upper triangular matrix	
(C) Skew-symmetric matrix	
(D) Symmetric matrix	
15 If A and B are square matrices of	
15 If A and B are square matrices of	

13

(A) $\frac{A+A^{T}}{2}$ (B) $\frac{A^{T}+B^{T}}{2}$ (C) $\frac{A^{T}-B^{T}}{2}$ (D) $\frac{B-B^{T}}{2}$

following is skew-symmetric-

Mathematics,(311)

Senior Secondary Course Learner's Guide, Mathematics (311)

Stretch Yourself

- 1. Find the inverse matrix of $\begin{bmatrix} 4 & 7 \\ 1 & 2 \end{bmatrix}$
- 2. If A = $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$, then find the value of adj (adj A) is-
- 3. If $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and X is a matrix such that A = BX, then find the value of X

Hint to Check Your Progress

1B ,2 B, 3 D, 4 B, 5 D, 6 B, 7C, 8 A, 9C, 10 D, 11 D ,12 D ,13 C ,14 C ,15 D,