22

INVERSE OF A MATRIX AND ITS APPLICATIONS

Determinant of A Square Matrix

A square matrix A is said to be singular if its determinant is zero, i.e. $|A|=0$

A square matrix A is said to be non-singular
if its determinant is non-zero, i.e. $|A| \neq=0$

Minors and Cofactors of The

Elements of Square Matrix
Minor
The Determinant that is left by cancelling the row and column intersecting at a particular element is called the minor of that element.
If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ then Minor of a_{11} is

$$
M_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \text {, Similarly } M_{12}=
$$

$$
\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
$$

Using this concept the value of Determinant can be

$$
\Delta=\mathrm{a}_{11} \mathrm{M}_{11}-\mathrm{a}_{12} \mathrm{M}_{12}+\mathrm{a}_{13} \mathrm{M}_{13}
$$

Cofactor

The cofactor of an element $a_{i j}$ is denoted by F_{ij} and is equal to $(-1)^{\mathrm{i}}+\mathrm{j}_{\mathrm{M}}^{\mathrm{ij}}$ where M is a minor of element a_{ij}
if $\quad \Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
then $\mathrm{F}_{11}=(-1)^{1+1} \mathrm{M}_{11}=\mathrm{M}_{11}=$ $\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$

$$
\mathrm{F}_{12}=(-1)^{1+2} \mathrm{M}_{12}=-\mathrm{M}_{12}=-
$$

$$
\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
$$

ADJOINT OF A SQUARE MATRIX

If every element of a square matrix A be replaced by its cofactor in $|A|$, then the transpose of the matrix so obtained is called the adjoint of matrix A and it is denoted by adj A
Thus if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a square matrix and Fij be the cofactor of a_{ij} in $|\mathrm{A}|$, then

$$
\operatorname{Adj} \mathrm{A}=\left[\mathrm{F}^{\mathrm{ij}}\right]^{\mathrm{T}}
$$

$$
\text { Hence if } A=\left[\begin{array}{ccc}
a_{11} & a_{12} & \ldots a_{1 n} \\
a_{21} & a_{22} & \ldots a_{2 n} \\
\ldots & \ldots & \ldots \ldots . . \\
\ldots . . & \ldots & \ldots \ldots . . \\
a_{n 1} & a_{n 2} & \ldots a_{n n}
\end{array}\right] \text {, then }
$$

$$
\operatorname{Adj} A=\left[\begin{array}{ccc}
\mathrm{F}_{11} & \mathrm{~F}_{12} & \ldots \mathrm{~F}_{1 \mathrm{n}} \\
\mathrm{~F}_{21} & \mathrm{~F}_{22} & \ldots \mathrm{~F}_{2 \mathrm{n}} \\
\ldots & \ldots & \ldots \ldots \ldots \\
\ldots & \ldots . & \ldots \ldots . . \\
\mathrm{F}_{\mathrm{n} 1} & \mathrm{~F}_{\mathrm{n} 2} & \ldots \mathrm{~F}_{\mathrm{nn}}
\end{array}\right]^{\mathrm{T}}
$$

INVERSE OF A MATRIX

If A and B are two matrices such that

$$
\mathrm{AB}=\mathrm{I}=\mathrm{BA}
$$

then B is called the inverse of A and it is denoted by A^{-1}, thus

$$
\mathrm{A}^{-1}=\mathrm{B} \Leftrightarrow \mathrm{AB}=\mathrm{I}=\mathrm{BA}
$$

To find inverse matrix of a given matrix A we use following formula

$$
\mathrm{A}^{-1}=\frac{\operatorname{adj} \mathrm{A}}{|\mathrm{~A}|}
$$

Thus A^{-1} exists $\Leftrightarrow|\mathrm{A}| \neq 0$

SOLUTION OF A SYSTEM OF

LINEAR EQUATIONS

MATRIX METHOD

Let
$a 1 x+b 1 y=c 1$
$a 2 x+b 2 y=c 2$
Matrix equation form

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

If A is singular, then $|A|=0$. Hence, A^{-1} does not exist

If not
$A^{-1}(A X)=A^{-1} B$
$\left(A^{-1} A\right) X=A^{-1} B$
$X=A^{-1} B$

CRITERION FOR CONSISTENCY

 OF A SYSTEM OF EQUATIONSLet $A X=B$ be a system of two or three linear equations.

1) If $|\mathrm{A}| \neq 0$, then the system is consistent and has a unique solution, given by
$X=A^{-1} B$
2) If $|\mathrm{A}|=0$, then the system may or may not be consistent and if consistent, it does not have a unique solution. If in addition
(Adj A) B $\neq \mathrm{O}$ then the system is inconsistent
(Adj A) $\mathrm{B}=\mathrm{O}$, then the system is consistent and has infinitely many solutions.

Check Your Progress

1. If cofactor of $2 x$ in the determinant $\left|\begin{array}{ccc}x & 1 & -2 \\ 1 & 2 x & x-1 \\ x-1 & x & 0\end{array}\right|$ is zero, then x equals to-
(A) 0
(B) 2
(C) 1
(D) -1
2. If $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ and A_{2}, B_{2}, C_{2} are respectively cofactors of a_{2}, b_{2}, c_{2} then $\mathrm{a}_{1} \mathrm{~A}_{2}+\mathrm{b}_{1} \mathrm{~B}_{2}+\mathrm{c}_{1} \mathrm{C}_{2}$ is equal to-
(A) $-\Delta$
(B) 0
(C) Δ
(D) None of these
3. The equations $x+2 y+3 z=1$,
$2 x+y+3 z=2$ and $5 x+5 y+9 z=4$ have-
(A) unique solution
(B) many solutions
(C) inconsistent
(D) None of these
(C) $\left[\begin{array}{lll}0 & 0 & 9 \\ 0 & 9 & 0 \\ 9 & 0 & 0\end{array}\right] \quad$ (D) None of these
4. If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$, then $\left|A+A^{T}\right|$ equals -
(A) $4\left(a^{2}-b^{2}\right)$
(B) $2\left(a^{2}-b^{2}\right)$
(C) $a^{2}-b^{2}$
(D) 4
ab
5. For suitable matrices A, B; the false statement is-
(A) $(A B)^{T}=A^{T} B^{T}$
(B) $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
(C) $(\mathrm{A}-\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}-\mathrm{B}^{\mathrm{T}}$
(D) $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$
6. If $\mathrm{A}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then $\mathrm{A} A^{\prime}$ equals -
(A) I
(B) A
(C) A^{\prime}
(D) 0
7. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 0 & 2\end{array}\right]$, then the value of adj (adj A) is-
(A) $|\mathrm{A}|^{2}$
(B) -2 A
(C) 2 A
(D) A^{2}
8. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 3 & 1 \\ 2 & 1 & 2\end{array}\right]$, then $A(\operatorname{adj} A)$ equals-
(A) $\left[\begin{array}{lll}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]$ (B) $-\left[\begin{array}{lll}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]$
9. If $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]$, then $\mathrm{A}^{-1}=$
(A) $\frac{1}{7}\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]$ (B) $\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$
(C) ${ }^{\frac{1}{9}}\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]$ (D) $\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$
10. If $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 1 & 3\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}4 & 6 \\ 2 & 3\end{array}\right], \mathrm{C}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then invertible matrices are-
(A) A and B
(B) B and C
(C) A and C
(D) All

Stretch Yourself

1. Find the value of x, y, z for the equation

$$
\begin{aligned}
& x+2 y+3 z=1,2 x+y+3 z=2,5 x \\
& +5 y+9 z=4
\end{aligned}
$$

2. The system of linear equations
$\mathrm{x}+\mathrm{y}+\mathrm{z}=2$, $2 \mathrm{x}+\mathrm{y}-\mathrm{z}=3,3 \mathrm{x}+2 \mathrm{y}+\mathrm{kz}=4$ has a unique solution .Find the value of k.
3. If α, β, γ are the roots of $x^{3}+\mathrm{ax}^{2}+$ $\mathrm{b}=0$, then Calculate the value of $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|$
4. If $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=1, \mathrm{bx}+\mathrm{cy}+\mathrm{az}=0=\mathrm{cx}$
$+a y+b z$, then solve

$$
\left|\begin{array}{lll}
x & y & z \\
z & x & y \\
y & z & x
\end{array}\right|\left|\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
$$

5. If matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7\end{array}\right]$ and its inverse is denoted by $A^{-1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then find the value of a_{23}.

Hint to Check Yourself

1 C	$\mathbf{2 B}$	3 A	4 A	5 A
$\mathbf{6 A}$	7 B	$\mathbf{8 B}$	9 D	10 C

