INVERSE OF A MATRIX AND ITS APPLICATIONS

Determinant of A Square Matrix

A square matrix A is said to be singular if its determinant is zero, i.e. |A| = 0

A square matrix A is said to be non-singular if its determinant is non-zero, i.e. $|A| \neq 0$

Minors and Cofactors of The Elements of Square Matrix

Minor

The Determinant that is left by cancelling the row and column intersecting at a particular element is called the minor of that element.

If
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 then Minor of

a11 is

$$M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
, Similarly $M_{12} =$

$$\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

Using this concept the value of Determinant can be

$$\Delta = a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13}$$

Cofactor

The cofactor of an element a_{ij} is denoted by F_{ij} and is equal to $(-1)^{i+j}$ M_{ij} where M is a minor of element a_{ij}

if
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

then $F_{11} = (-1)^{1+1} M_{11} = M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$
 $F_{12} = (-1)^{1+2} M_{12} = -M_{12} = -$

$$\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

ADJOINT OF A SQUARE MATRIX

If every element of a square matrix A be replaced by its cofactor in |A|, then the transpose of the matrix so obtained is called the adjoint of matrix A and it is denoted by adj A

Thus if $A = [a_{ij}]$ be a square matrix and F^{ij} be the cofactor of a_{ij} in |A|, then

$$Adj A = [F^{ij}]^T$$

Hence if
$$A = \begin{bmatrix} a_{11} & a_{12} & ...a_{1n} \\ a_{21} & a_{22} & ...a_{2n} \\ & & \\ a_{n1} & a_{n2} & ...a_{nn} \end{bmatrix}$$
, then

$$\label{eq:AdjA} Adj\; A = \begin{bmatrix} F_{11} & F_{12} & ...F_{1n} \\ F_{21} & F_{22} & ...F_{2n} \\ ... & ... & \\ F_{n1} & F_{n2} & ...F_{nn} \end{bmatrix}^T$$

Senior Secondary Course Learner's Guide, Mathematics (311)

INVERSE OF A MATRIX

If A and B are two matrices such that

$$AB = I = BA$$

then B is called the inverse of A and it is denoted by A^{-1} , thus

$$A^{-1} = B \Leftrightarrow AB = I = BA$$

To find inverse matrix of a given matrix A we use following formula

$$A^{-1} = \frac{adjA}{|A|}$$

Thus A^{-1} exists $\Leftrightarrow |A| \neq 0$

SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

MATRIX METHOD

Let

$$a_1x + b_1y = c_1$$

...(i)

$$a2x + b2y = c2$$

...(ii)

Matrix equation form

$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

If A is singular, then |A|=0. Hence, A^{-1} does not exist

If not

$$A^{-1}(AX) = A^{-1}B$$

$$(A^{-1}A) X = A^{-1} B$$

$$X = A^{-1}B$$

CRITERION FOR CONSISTENCY OF A SYSTEM OF EQUATIONS

Let AX = B be a system of two or three linear equations.

1) If $|A| \neq 0$, then the system is consistent and has a unique solution, given by

$$X=A^{-1}B$$

2) If |A|=0, then the system may or may not be consistent and if consistent, it does not have a unique solution. If in addition

> $(Adi A) B \neq O$ then the system is inconsistent (Adi A) B = O, then the system is consistent and has infinitely many solutions.

Check Your Progress

1. If cofactor of 2x in the determinant 1 $2x \times -1$ is zero, then x equals to-

- (A) 0 (B) 2
- (C) 1
- (D) -1

2. If $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and A₂, B₂, C₂ are

respectively cofactors of a2, b2, c2 then $a_1A_2 + b_1B_2 + c_1C_2$ is equal to-

 $(A) - \Delta$

(B) 0

- (C) Δ (D) None of these

3. The equations x + 2y + 3z = 1,

2x + y + 3z = 2 and 5x + 5y + 9z = 4have-

(A) unique solution (B) many solutions

Senior Secondary Course Learner's Guide, Mathematics (311)

- (C) inconsistent these
- (D) None of
- 4. If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$, then $|A + A^T|$ equals -
 - (A) $4(a^2 b^2)$ (B) $2(a^2 b^2)$
 - (C) $a^2 b^2$
- (D) 4
- 5. For suitable matrices A, B; the false statement is-
 - $(A)(AB)^T = A^TB^T$
 - (B) $(A^{T})^{T} = A$
 - (C) $(A B)^T = A^T B^T$
 - (D) $(A^T)^{-1} = (A^{-1})^T$
- 6. If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then A A'equals -
 - (A) I (B) A (C) A'(D) 0
- 7. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$, then the value of adj
 - (adj A) is-
 - (A) $|A|^2$ (B) 2A

 - (C) 2A (D) A^2
- 8. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$, then A (adj A) equals-
 - $\begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \quad \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}$

- (C) $\begin{bmatrix} 0 & 0 & 9 \\ 0 & 9 & 0 \\ 9 & 0 & 0 \end{bmatrix}$ (D) None of these
- 9. If $A = \begin{bmatrix} 1 & 2 \\ -4 & -1 \end{bmatrix}$, then $A^{-1} = \begin{bmatrix} 1 & 2 \\ -4 & -1 \end{bmatrix}$
 - $(A)^{\frac{1}{7}} \begin{bmatrix} 1 & 2 \\ -4 & -1 \end{bmatrix} (B) \begin{bmatrix} -1 & -2 \\ 4 & 1 \end{bmatrix}$
 - (C) $\frac{1}{9}\begin{bmatrix}1 & 2\\4 & 1\end{bmatrix}$ (D) $\frac{1}{7}\begin{bmatrix}-1 & -2\\4 & 1\end{bmatrix}$
- 10. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. then invertible matrices are-
 - (A) A and B (B) B and C
 - (C) A and C (D) All

Stretch Yourself

1. Find the value of x, y, z for the equation

$$x + 2y + 3z = 1$$
, $2x + y + 3z = 2$, $5x + 5y + 9z = 4$

2. The system of linear equations x + y + z =2x + y - z = 3, 3x + 2y + kz = 4 has a unique solution .Find the value of k.

3. If α, β, γ are the roots of $x^3 + ax^2 + b = 0$, then Calculate the value of

$$\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$$

4. If ax + by + cz = 1, bx + cy + az = 0 = cx + ay + bz, then solve

$$\begin{vmatrix} x & y & z & a & b & c \\ z & x & y & c & a & b \\ y & z & x & b & c & a \\ \end{vmatrix}$$

5. If matrix A = $\begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix}$ and its

inverse is denoted by $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \text{ then find } \text{ the }$

value of a23.

Hint to Check Yourself

1C 2B 3A 4A 5A

6 A 7 B 8B 9D 10C