23

RELATIONS AND FUNCTIONS-II

Symmetric Relation

RELATION

Let A and B be two sets. Then a relation R from Set A into Set B is a subset of $A \times B$.

Thus, R is a relation from A to $B \Leftrightarrow R \subseteq A \times$ B

- If $(a, b) \in R$ then we write $a R b$ which is read as ' a ' is related to b by the relation R,
- If $(\mathrm{a}, \mathrm{b}) \notin \mathrm{R}$ then we write aRb and we say that a is not related to b bythe relation R
- If $n(A)=m$ and $n(B)=n$, then $A \times B$ has mn ordered pairs, therefore, total number of relations form A to B is 2^{mn}

Types of Relations

Reflexive Relation

A relation R on a set A is said to be reflexive if every element of A is related to itself.

- Thus, R is reflexive $\Leftrightarrow(a, a) \in R$ for all $a \in A$
- A relation R is not reflexive if there exists an element $a \in A$ such that (a, a) $\mathrm{R} \notin \mathrm{A}$

A relation R on a set A is said to be symmetric relation if $(a, b) \in R \Rightarrow(b, a) \in R$ for all (a, b) $\in \mathrm{A}$
i.e. $a R b \Rightarrow b R a$ for all $(a, b) \in A$

Transitive Relation

Let A be any set. A relation R on A is said to be transitive relation if
$(a, b) \in R$ and and $(b, c) \in R \Rightarrow(a, c) \in R$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$
i.e. $a R b$ and $b R c \Rightarrow a R c$ for all $a, b, c \in A$

EQUIVALENCE RELATION

A relation R on a set A is said to be an equivalence relation on A iff

- It is reflexive i.e. $(a, a) \in R$ for all $a \in A$
- It is symmetric i.e. $(a, b) \in R \quad \Rightarrow(b, a) \in R$ for all $a, b \in A$
- It is transitive i.e. $(a, b) \in R$ and $(b, c) \in R$ $\Rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$

CLASSIFICATION OF FUNCTIONS

Let f be a function from A to B. If every element of the set B is the image of at least one element of the set A i.e. if there is no unpaired element in the set B then

The function f maps the set A onto the set B . Otherwise we say that the function maps the set A into the set B.

Functions for which each element of the set A is mapped to a different element of the set B are said to be one-to-one.

A function can map more than one element of the set A to the same element of the set B. Such a type of function is said to be many-to-one.

COMPOSITION OF FUNCTIONS

$\mathrm{y}=2 \mathrm{x}+1, \mathrm{x} \in\{1,2,3\}$
$z=y+1, \quad y \in\{3,5,7\}$
Then z is the composition of two functions x and y because z is defined in terms of y and y in terms of x.

The composition, say, gof of function g and f is defined as function g of function
$\mathrm{F}: \mathrm{A} \rightarrow$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$
gof:A to C

INVERSE OF A FUNCTION

- If range is a subset of co-domain that function is called on into function.
- If $f: A \rightarrow B$ and $f(x)=f(y) \rightarrow x=y$ that function is called one-one function.
- Any function is invertible if it is one-oneonto or bijective
- If more than one element of A has only one image in to than function is called many one function

Binary Operation

Let A, B be two non-empty sets, then a function from $\mathrm{A} \times \mathrm{A}$ to A is called a binary operation on A.

If a binary operation on A is denoted by '*', the unique element of A associated with the ordered pair (a, b) of $A \times A$ is denoted by $a * b$.

The order of the elements is taken into consideration, i.e. the elements associated with the pairs (a, b) and ($b, a)$ may be different i.e. a * b may not be equal to b * a.

Let A be a non-empty set and '*' be an operation on A, then

- A is said to be closed under the operation * iff for all $a, b \in A$ implies a * $\mathrm{b} \in \mathrm{A}$.
- The operation is said to be commutative iff $a * b=b * a$ for all $a, b \in A$.
- The operation is said to be associative iff $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c})$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$
- An element $\mathrm{e} \in \mathrm{A}$ is said to be an identity element iff $e^{*} \mathrm{a}=\mathrm{a}=\mathrm{a}^{*} \mathrm{e}$
- An element $\mathrm{a} \in \mathrm{A}$ is called invertible iff these exists some $b \in A$ such that $a * b=$ $\mathrm{e}=\mathrm{b} * \mathrm{a}$
- a, b is called inverse of a

Check Your Progress

1. If $\mathrm{f}: I \rightarrow I, f(\mathrm{x})=\mathrm{x}^{3}+1$, then f is -
(A) one-one but not onto
(B) onto but not one-one
(C) One-one onto
(D) None of these
2. Function $f: R \rightarrow R, f(x)=x|x|$ is -
(A) one-one but not onto
(B) onto but not one-one
(C) one-one onto
(D) neither one-one nor onto
3. $f: R \rightarrow R, f(x)=\frac{x^{2}}{1+x^{2}}$, is -
(A) many-one function
(B) odd function
(C) one-one function
(D) None of these
4. If $\mathrm{f}: \mathrm{R}_{0} \rightarrow \mathrm{R}_{0}, \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}$, then f is -
(A) one-one but not onto
(B) onto but not one-one
(C) neither one-one nor onto
(D) both one-one and onto
5. If $f(x)=2 x$ and g is identity function, then-
(A) $(\mathrm{fog})(\mathrm{x})=\mathrm{g}(\mathrm{x})$
(B) $(\mathrm{g}+\mathrm{g})(\mathrm{x})=\mathrm{g}(\mathrm{x})$
(C) $(\mathrm{fog})(\mathrm{x})=(\mathrm{g}+\mathrm{g})(\mathrm{x})$
(D) None of these
6. gof exists, when-
(A) domain of $f=$ domain of g
(B) co-domain of $f=$ domain of g
(C) co-domain of $\mathrm{g}=$ domain of
(D) co-domain of $g=$ co-domain of f
7. If $f: R \rightarrow R, f(x)=x^{2}+2 x-3$ and $g: R$ $\rightarrow R, g(x)=3 x-4$, then the value of fog (x) is-
(A) $3 x^{2}+6 x-13$
(B) $9 x^{2}-18 x+5$
(C) $(3 x-4)^{2}+2 x-3$
(D) None of these
8. If $f: R \rightarrow R, f(x)=x^{2}+3$, then preimage of 2 under f is -
(A) $\{1,-1\}$
(B) $\{1\}$
(B) $\{-1\}$
(D) $\{0\}$
9. Which of the following functions has its inverse-
(A) $f: R \rightarrow R, f(x)=a^{x}$
(B) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=|\mathrm{x}|+|\mathrm{x}-1|$
(C) $\mathrm{f}: \mathrm{R}_{0} \rightarrow \mathrm{R}^{+}, \mathrm{f}(\mathrm{x})=|\mathrm{x}|$
(D) $\mathrm{f}:[\pi, 2 \pi] \rightarrow[-1,1], \mathrm{f}(\mathrm{x})=\cos \mathrm{x}$
10. If function $f: R \rightarrow R^{+}, f(x)=2^{x}$, then f^{-1} (x) will be equal to-
(A) $\log _{x} 2$
(B) $\log _{2}(1 / x)$
(C) $\log _{2} \mathrm{X}$
(D) None of these

Stretch Yourself

1. If $f(x)=\sqrt{\left(2+x-x^{2}\right)}$ and
$g(x)=\sqrt{-x}+\frac{1}{\sqrt{x+2}}$. Then find the
domain of $f+g$.
2. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $f(x)=x+\sqrt{x^{2}}$, then find the nature of function f.
3. If $f(x)=\frac{x}{\sqrt{1+x^{2}}}$, then find (fofof) (x)
4. Function $\mathrm{f}: \mathrm{R} \rightarrow{ }^{\mathrm{R}+}, \mathrm{f}(\mathrm{x})={ }^{\mathrm{x} 2}+2 \& \mathrm{~g}:{ }^{\mathrm{R}+}$
$\rightarrow R, g(x)=\left(1-\frac{1}{1-x}\right)$ then find the value of gof (2).
5. If $f(x)=\log _{e}\left(x+\sqrt{1+x^{2}}\right)$, Find $f^{-1}(x)$

Hint to Check Yourself

$1 \mathrm{~A} \quad 2 \mathrm{C} \quad 3 \mathrm{~A} 4 \mathrm{D} 5 \mathrm{C}$
6 B 7 B 8 D 9 D 10 C

