24

INVERSE TRIGONOMETRIC FUNCTIONS

Graph of different inverse

 trigonometric Function(i) $f(x)=\sin ^{-1} x$

(ii) $f(x)=\cos ^{-1} x$

(iii) $f(x)=\tan ^{-1} x$

(iv) $\mathrm{f}(\mathrm{x})=\cot ^{-1} \mathrm{x}$

(v) $\quad f(x)=\sec ^{-1} x$

(vi) $\quad f(x)=\operatorname{cosec}^{-1} x$

Domain \& range of Inverse Trigonometric function

Function	Domain	Range
$\sin ^{-1} \mathrm{x}$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\cos ^{-1} \mathrm{x}$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1} \mathrm{x}$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\cot ^{-1} \mathrm{x}$	$(-\infty, \infty)$	$(0, \pi)$
$\sec ^{-1} \mathrm{x}$	$(-\infty,-1] \cup[1, \infty)$	$\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$
$\operatorname{cosec}^{-1} \mathrm{x}$	$(-\infty,-1] \cup[1, \infty)$	$\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$

Properties

(i) $\sin ^{-1}(\sin \theta)=\theta$,

Provided that $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
(ii) $\cos ^{-1}(\cos \theta)=\theta$,

Provided that $0 \leq \theta \leq \pi$
(iii) $\tan ^{-1}(\tan \theta)=\theta$,

Provided that $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
(iv) $\cot ^{-1}(\cot \theta)=\theta$,

Provided that $0<\theta<\pi$
(v) $\sec ^{-1}(\sec \theta)=\theta$,

Provided that $0 \leq \frac{\pi}{2}$ or $\frac{\pi}{2}<\theta \leq \pi$
(vi) $\operatorname{cosec}^{-1}(\operatorname{cosec} \theta)=\theta$

Provided that $-\frac{\pi}{2} \leq 0$ or $0<\theta \frac{\pi}{2}$
(vii) $\quad \csc ^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right)$
(viii) $\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)$
(ix) $\sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right)$
(x) $\quad \sin ^{-1}(-x)=-\sin ^{-1} x$
(xi) $\quad \cos ^{-1}(-x)=-\cos ^{-1} x$
(xii) $\tan ^{-1}(-x)=-\tan ^{-1} x$
(xiii) $\quad \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
(xiv) $\tan ^{-1} \mathrm{X}+\cot ^{-1} \mathrm{X}=\frac{\pi}{2}$
(xv) $\quad \sec ^{-1} \mathrm{x}+\operatorname{cosec}^{-1} \mathrm{x}=\frac{\pi}{2}$
(xvi) $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
(xvii) $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$
(xviii) $\quad 2 \tan ^{-1} x=\sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right]=$

$$
\cos ^{-1}\left[\frac{1-x^{2}}{1+x^{2}}\right]=\tan ^{-1}\left[\frac{2 x}{1-x^{2}}\right]
$$

(xix) $\sin ^{-1} x=\cos ^{-1}\left(\sqrt{1-x^{2}}\right)=$

$$
\tan ^{-1}\left[\frac{x}{\sqrt{1-x^{2}}}\right]=\sec ^{-1}\left[\frac{1}{\sqrt{1-x^{2}}}\right]=
$$

$$
\cot ^{-1}\left[\frac{\sqrt{1-x^{2}}}{x}\right]=\csc ^{-1}\left[\frac{1}{x}\right]
$$

(xx) $\quad \cos ^{-1} x=\sin ^{-1}\left(\sqrt{1-x^{2}}\right)=$ $\tan ^{-1}\left[\frac{\sqrt{1-x^{2}}}{x}\right]$
(xxi) $=\csc ^{-1} \frac{1}{\sqrt{1-x^{2}}}=\cot ^{-1}\left[\frac{x}{\sqrt{1-x^{2}}}\right]=$ $\sec ^{-1} \frac{1}{x}$

Check Your Progress

1. $\sin ^{-1} \mathrm{x}+\sin ^{-1} \frac{1}{\mathrm{x}}+\cos ^{-1} \mathrm{x}+\cos ^{-1} \frac{1}{\mathrm{x}}=$
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{3 \pi}{2}$
(D) None of these
2. If $x>0, \sin ^{-1}(2 \pi+x)+\cos ^{-1}(2 \pi+x)$
(A) $2 \pi+\frac{\pi}{2}$
(B) $\frac{\pi}{2}$
(C) $x+\frac{\pi}{2}$
(D) None of these
3. $\sin ^{-1} \sin 15+\cos ^{-1} \cos 20+\tan ^{-1} \tan 25=$
(A) $19 \pi-60$
(B) $30-9 \pi$
(C) $19-60 \pi$
(D) $60 \pi-19$
4. $\tan ^{-1} \frac{\mathrm{a}-\mathrm{b}}{1+\mathrm{ab}}+\tan ^{-1} \frac{\mathrm{~b}-\mathrm{c}}{1+\mathrm{bc}}=$
(A) $\tan ^{-1} a-\tan ^{-1} b$
(B) $\tan ^{-1} \mathrm{a}-\tan ^{-1} \mathrm{c}$
(C) $\tan ^{-1} \mathrm{~b}-\tan ^{-1} \mathrm{c}$
(D) $\tan ^{-1} \mathrm{c}-\tan ^{-1} \mathrm{a}$
5. If $\sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{2}{3}=\sin ^{-1} x$, then x is equal to -
(A) 0
(B) $\frac{\sqrt{5}-4 \sqrt{2}}{9}$
(C) $\frac{\sqrt{5}+4 \sqrt{2}}{9}$
(D) $\frac{\pi}{2}$
6. If $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$ then $x=$
(A) -1
(B) $\frac{1}{6}$
(C) $-1, \frac{1}{6}$
(D) None of these
7. If $\theta=\cot ^{-1} \sqrt{\cos x}-\tan ^{-1} \sqrt{\cos x}$, then $\sin \theta=$
(A) $\tan \frac{1}{2} x$
(B) $\tan ^{2}(x / 2)$
(C) $\frac{1}{2} \tan ^{-1}(\mathrm{x} / 2)$

None of these
9. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive real numbers and the value of

$$
\begin{array}{r}
\theta=\tan ^{-1} \sqrt{\frac{a(a+b+c)}{b c}}+\tan ^{-1} \\
\sqrt{\frac{b(a+b+c)}{c a}}+\tan ^{-1} \sqrt{\frac{c(a+b+c)}{a b}}
\end{array}
$$

then $\tan \theta$ is equal to -
(A) 0
(B) 1
(C) $\frac{a+b+c}{a b c}$
(D) None of these
10. The value of

$$
\tan ^{-1}(1)+\cos ^{-1}(-1 / 2)+\sin ^{-1}(-1 / 2) \text { is }
$$ equal to -

(A) $\pi / 4$
(B) $5 \pi / 12$
(C) $3 \pi / 4$
(D) $13 \pi / 12$
7. The value of $\sin ^{-1}\left(\cos \frac{33 \pi}{5}\right)$ is -
(A) $\frac{3 \pi}{5}$
(B) $\frac{7 \pi}{5}$
(C) $\frac{\pi}{10}$
(D) $-\frac{\pi}{10}$

Stretch Yourself

1. Find the principal value of

$$
\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)
$$

2. Find the value of $\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right)\right\}\right]$
3. Find the value of

$$
3 \tan ^{-1}\left(\frac{1}{2}\right)+2 \tan ^{-1}\left(\frac{1}{5}\right)
$$

4. If $3 \cos ^{-1}\left(x^{2}-7 x+25 / 2\right)=\pi$, then find x
5. Find the value of

$$
\cot \left[\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)\right]
$$

Hint to Check Yourself

1 A $2 \mathrm{D} \quad 3 \mathrm{~B} \quad 4 \mathrm{~B} \quad 5 \mathrm{C}$
6B 7 D 8 B 8 A 10 C

