29

APPLICATIONS OF DERIVATIVES

RATE OF CHANGE OF QUANTITIES

The value of $\frac{d y}{d x}$ at $x=x_{0}$ i.e $\left(\frac{d y}{d x}\right)_{x=x_{0}}=$ $f^{\prime}\left(x_{0}\right)$

APPROXIMATIONS

$$
\Delta y=\frac{d y}{d x} \Delta x
$$

Absolute Error: The error $\Delta \mathrm{x}$ in x is called the absolute error in x

RELATIVE ERROR : If Δx is an error in c then $\frac{\Delta x}{x}$ is called relative error in x

PERCENTAGE ERROR: If Δx is an error in x , then $\frac{\Delta x}{x} \mathrm{x} 100$ is called percentage error in x .

Slope of Tangent and

Normal

The equation of normal at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the curve
$y=f(x)$ is

$$
\left(y-y_{1}\right)=-\frac{1}{\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}}\left(x-x_{1}\right)
$$

$$
\text { or }\left(y-y_{1}\right) \cdot\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}+\left(x-x_{1}\right)=0
$$

EQUATIONS OF TANGENT AND NORMAL TO A CURVE

$$
y-y_{1}=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}\left[x-x_{1}\right]
$$

the equation of normal to the curve $y=f(x)$ at the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is

$$
y-y_{1}=\left(\frac{1}{\frac{d y}{d x}}\right)_{\left(x_{1}, y_{1}\right)}\left[x-x_{1}\right]
$$

The equation of tangent to a curve is parallel to x -axis if

$$
\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=0 .
$$

. In that case the equation of tangent is y

$$
=y_{1}
$$

In
$\operatorname{case}\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)} \rightarrow$
∞, tangent at $\left(x_{1}, y_{1}\right)$ is parellel to y axis and its equartiontimusus on $[\mathrm{a}, \mathrm{b}]$ and
x_{1}

Rolle's Theorem

If a function f defined on the closed interval [a, b], is
(i) Continuous on $[\mathrm{a}, \mathrm{b}]$,
(ii) Derivable on (a, b) and
(iii) $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$, then there exists atleast one real number c between a and b (a $<\mathrm{c}<\mathrm{b}$) such that $\mathrm{f}^{\prime}(\mathrm{c})=0$

Geometrical interpretation

Let the curve $y=f(x)$, which is continuous on $[\mathrm{a}, \mathrm{b}]$ and derivable on (a , b), be drawn.

The theorem states that between two points with equal ordinates on the graph of f, there exists atleast one point where the tangent is parallel to x -axis.

Langrange's Mean Value Theorem

If a function f defined on the closed interval [a, b], is
(ii) Derivable on (a, b), then there exists atleast one real number c between a and $\mathrm{b}(\mathrm{a}<\mathrm{c}<\mathrm{b})$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Geometrical interpretation

The theorem states that between two points A and B on the graph of f there exists atleast one point where the tangent is parallel to the chord $A B$.

INCREASING
AND

DECREASING FUNCTIONS

A function is said to be an increasing function in an interval if $f(x+h)>f(x)$ for all x belonging to the interval when h is positive.)
A function $f(x)$ defined over the closed interval $[a, b]$ is said to be a decreasing function in the given interval, if $f\left(x_{2}\right)$ $\leq \mathrm{f}\left(\mathrm{x}_{1}\right)$, whenever $\mathrm{x}_{2}>\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2} \in[\mathrm{a}, \mathrm{b}]$. It is saidto be strictly decreasing if $f\left(x_{1}\right)>$ $f\left(x_{2}\right)$ for all $x_{2}>x_{1}, x_{1}, x_{2} \in[a, b]$

MONOTONIC FUNCTIONS

Monotonic Increasing :

A function $f(x)$ defined in a domain D is said to be monotonic increasing function if the value of $f(x)$ does not decrease (increase) by increasing (decreasing) the value of x or

$$
\begin{aligned}
& \text { If } \\
& \left\{\begin{array}{l}
\mathrm{x}_{1}<\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \leq \mathrm{f}\left(\mathrm{x}_{2}\right) \\
\text { or } \mathrm{x}_{1}<\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \ngtr \mathrm{f}\left(\mathrm{x}_{2}\right), \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{D}
\end{array}\right.
\end{aligned}
$$

or
$\left\{\begin{array}{l}\mathrm{x}_{1}>\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \geq \mathrm{f}\left(\mathrm{x}_{2}\right) \\ \text { or } \mathrm{x}_{1}>\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \nless \mathrm{f}\left(\mathrm{x}_{2}\right), \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{D}\end{array}\right.$

Monotonic Decreasing :

A function $f(x)$ defined in a domain D is said to be monotonic decreasing function if the value of $f(x)$ does not increase (decrease) by increasing (decreasing) the value of x or

If

$\left\{\begin{array}{l}\mathrm{x}_{1}<\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \geq \mathrm{f}\left(\mathrm{x}_{2}\right) \\ \text { or } \mathrm{x}_{1}<\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \nless \mathrm{f}\left(\mathrm{x}_{2}\right), \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{D}\end{array}\right.$
or

$$
\left\{\begin{array}{l}
\mathrm{x}_{1}>\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \leq \mathrm{f}\left(\mathrm{x}_{2}\right) \\
\text { or } \mathrm{x}_{1}>\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \ngtr \mathrm{f}\left(\mathrm{x}_{2}\right), \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{D}
\end{array}\right.
$$

A function is said to be monotonic function in a domain if it is either monotonic increasing or monotonic decreasing in that domain.

Similarly if $\mathrm{x}_{1}<\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right), \forall \mathrm{x}_{1}$, $\mathrm{x}_{2} \in \mathrm{D}$ then it is called strictly decreasing in domain D .

RELATION BETWEEN THE SIGN OF THE DERIVATIVE AND MONOTONICITY OF FUNCTION

MAXIMUM AND MINIMUM VALUES OF A FUNCTION

The value of a function $f(x)$ is said to be maximum at $\mathrm{x}=\mathrm{a}$, if there exists a very small positive number h, such that $\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{a}) \forall \mathrm{x} \in(\mathrm{a}-\mathrm{h}, \mathrm{a}+\mathrm{h}), \mathrm{x} \neq \mathrm{a}$

In this case the point $\mathrm{x}=\mathrm{a}$ is called a point of maxima for the function $f(x)$.

Similarly, the value of $f(x)$ is said to the minimum
at $x=b$, If there exists a very small positive number, h, such that

$$
f(x)>f(b), \forall x \in(b-h, b+h), x \neq b
$$

In this case $\mathrm{x}=\mathrm{b}$ is called the point of minima for the function $f(x)$.

Hene we find that,
(i) $\mathrm{x}=\mathrm{a}$ is a maximum point of $\mathrm{f}(\mathrm{x})$

$$
\left\{\begin{array}{l}
f(a)-f(a+h)>0 \\
f(a)-f(a-h)>0
\end{array}\right.
$$

(ii) $x=b$ is a minimum point of $f(x)$

$$
\left\{\begin{array}{l}
\mathrm{f}(\mathrm{~b})-\mathrm{f}(\mathrm{~b}+\mathrm{h})<0 \\
\mathrm{f}(\mathrm{~b})-\mathrm{f}(\mathrm{~b}-\mathrm{h})<0
\end{array}\right.
$$

(iii) $\mathrm{x}=\mathrm{c}$ is neither a maximum point nor a minimum point $\left\{\begin{array}{l}f(c)-f(c+h) \\ \text { and } \\ f(c)-f(c-h)>0\end{array}\right\} \quad$ have opposite signs.
A. Necessary Condition : A point $\mathrm{x}=\mathrm{a}$ is an extreme point of a function $f(x)$ if
$f^{\prime}(a)=0$, provided $f^{\prime}(a)$ exists. Thus if $f^{\prime}(a)$ exists, then

$$
\begin{aligned}
& x=a \text { is an extreme point } \Rightarrow f^{\prime}(a)=0 \\
& \text { or } \\
& f^{\prime}(a) \neq 0 \Rightarrow x=a \text { is not an extreme point. }
\end{aligned}
$$

But its converse is not true i.e.
$f^{\prime}(a)=0 x=a$ is an extreme point.

B. Sufficient Condition :

(i) The value of the function $f(x)$ at $x=a$ is maximum, if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$.
(ii) The value of the function $f(x)$ at $x=$ a in minimum if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>$ $0>0$.

Check Yourself

1. When $\mathrm{x}<0$, function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ is -
(A) decreasing
(B) increasing
(C) constant
(D) not monotonic
2. Function $f(x)=2 x^{3}-9 x^{2}+12 x+29$ is decreasing when -
(A) (A) $x<2$
(B) $x>2$
(B) $(\mathrm{C}) \mathrm{x}>3$
(D) $1<x<2$
3. The function $f(x)=\frac{|x|}{x}(x \neq 0), x>0$ is -
(A) (A) decreasing
(B) increasing
(B) (C) constant function (D) None of these
4. When $x \in(0,1)$, function $f(x)=\frac{1}{\sqrt{x}}$ is
(A) increasing
(B) decreasing
(C) neither increasing nor decreasing
(D) constant
5. Function $f(x)=3 x^{4}+7 x^{2}+3$ is
(A) monotonically increasing
(B) monotonically decreasing
(C) not monotonic
(D) odd function
6. For what values of x, the function $f(x)=x+\frac{4}{x^{2}}$ is monotonically decreasing
(A) $\mathrm{x}<0$
(B) $x>2$
(A) (C) $x<2$
(D) $0<x<2$
7. $f(c)$ is a maximum value of $f(x)$ if -
(A) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
(B) $f^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})<0$
(C) $\mathrm{f}^{\prime}(\mathrm{c}) \neq 0, \mathrm{f}^{\prime \prime}(\mathrm{c})=0$
(D) $\mathrm{f}^{\prime}(\mathrm{c})<0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
8. $f(c)$ is a minimum value of $f(x)$ if -
(A) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
(B) $f^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})<0$
(C) $f^{\prime}(c) \neq 0, f^{\prime \prime}(c)=0$
(D) f^{\prime} (c) <0, f $^{\prime \prime}$ (c) >0
9. $f(c)$ is a maximum value of $f(x)$ when at $x=c$ -
(A) $f^{\prime}(x)$ changes sign from $+v e$ to $-\mathrm{ve}$
(B) $f^{\prime}(x)$ changes sign from $-v e$ to $+\mathrm{ve}$
(C) $f^{\prime}(x)$ does not change sign
(D) $f^{\prime}(x)$ is zero
10. $f(c)$ is a minimum value of $f(x)$ when at $\mathrm{x}=\mathrm{c}$ -
(A) $f^{\prime}(x)$ changes sign $+v e$ to $-v e$
(B) f ' (x) changes sign from $-v e$ to +ve
(C) $f^{\prime}(x)$ does not change sign
(D) $f^{\prime}(x)$ is zero

Stretch Yourself

1. Find the maximum value of $\sin ^{3} x+$ $\cos ^{3} \mathrm{x}$
2. Let $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)^{\mathrm{m}}(\mathrm{x}-2)^{\mathrm{n}}(\mathrm{m}, \mathrm{n} \in$ $N), x \in R$. Then find point where
$f(x)$ is either local maximum or local minimum
3. For the curve $\frac{c^{4}}{r^{2}}=\frac{a^{2}}{\sin ^{2} \theta}+\frac{b^{2}}{\cos ^{2} \theta}$, find the
a. maximum value of r
4. Find the minimum and maximum value of
a. $f(x, y)=7 x^{2}+4 x y+3 y^{2}$ subjected to $x^{2}+y^{2}=1$.
5. Let the function $f(x)$ be defined as below,
6. $f(x)=\left\{\begin{array}{lr}\sin ^{-1} \lambda+x^{2}, & 0<x<1 \\ 2 x, & x \geq 1\end{array}\right.$
a. $f(x)$ can have a minimum at x $=1$ then find value of λ is -
7. If $a^{2} x^{4}+b^{2} y^{4}=c^{6}$, then find the maximum value of $x y$

Hint to Check Yourself

1 A 2 D 3 C 4 B 5 C
6 D 7 B 8 A 9 A 10 B

