3

TRIGONOMETRIC FUNCTIONS-I

Circular Measure of Angle

- An angle is a union of two rays with the common end point. An angle is formed by the rotation of a ray as well.
- Negative and positive angles are formed according as the rotation is clockwise or anticlock-wise.

A Unit Circle

- when a line segment makes one complete rotation, its end point describes a circle.
- In case the length of the rotating line be one unit then the circle described will be a circle of unit radius. Such a circle is termed as unit circle.

A radian

- A radian is the measure of an angle subtended at the centre of a circle by an arc equal in length to the radius (r) of the circle

Relation between Degree and Radian

- An arc of unit length subtends an angle of 1 radian. The circumference 2π subtendan angle of 2π radian

Relation Between Length of an Arc and Radius of the Circle

- The angle subtended by an arc of a circle at the center of the circle

Is give by the ratio of the length of the arc and the radius of the circle.

- $\theta=\frac{l}{r}$

TRIGONOMETRIC FUNCTIONS

I Quadrant	II Quadrant	III Quadrant	IV Quadrant
All	Sin,cosec	tan,cot	cos,sec
Positive	Positive	Positive	Positive

Relation Between Trigonometric Functions

$$
\begin{gathered}
x=\sin \theta \\
y=\cos \theta \\
\tan \theta=\frac{\sin \theta}{\cos \theta} \\
\csc \theta=\frac{1}{\sin \theta} \\
\sec \theta=\frac{1}{\cos \theta} \\
\cot \theta=\frac{1}{\tan \theta}
\end{gathered}
$$

Trigonometric Functions Of Some Specific Real Numbers

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N.D.

Graphs of Trigonometric Functions

- The importance of the graph of functions stems from the fact that this is a convenient way of presenting many properties of the functions.
- By observing the graph we can examine several characteristic properties of the functions such as
A. periodicity,
B. intervals in which the function is increasing or decreasing
C. symmetry about axes,
D. maximum and minimum points of the graph in the given interval

Graphs of Trigonometric function

Variation of $\sin \theta$ from 0 to 2π

	\sin	\cos	\tan	cosec	sec	cot
0	0	1	0	ND	1	ND
$\frac{\pi}{6}$	0.5	0.87	0.58	2	1.15	1.73
$\frac{\pi}{3}$	0.87	0.5	$+\mathrm{N} . \mathrm{D}$.	1.5	2	0.58
$\frac{\pi}{2}$	1	0	-1.73	1	-ND	0
$\frac{2 \pi}{3}$	0.87	0.5	-0.58	1.15	-2	-.58
$\frac{5 \pi}{6}$	0.5	-	0	2	-	-
π	0	-1	0.58	-ND	-1	ND
$\frac{7 \pi}{6}$	-0.5	-	1.73	-2	-	1.73
$\frac{0.87}{3}$	-	-0.5	+	-1.15	-2	.58
$\frac{3 \pi}{2}$	-1	0	-1.73	-1	-ND	0
$\frac{5 \pi}{3}$	-	0.5	-0.58	-1.15	2	-.58
$\frac{11 \pi}{6}$	-0.5	0.87	0	2	1.15	-
2π	0	1	0	-ND		-ND

Variation of $\cos \theta$ from 0 to 2π

Variation of $\tan \theta$ from 0 to 2π

Variation of $\cot \theta$ from 0 to 2π

Variation of $\sec \theta$ from 0 to 2π

Variation of $\operatorname{cosec} \theta$ varies from 0 to 2π

PERIODICITY OF THE

TRIGONOMETRIC FUNCTIONS

- A function $f(x)$ is said to be periodic if its value is unchanged when the value of the variable is increased by a constant, that is
- if $f(x+p)=f(x)$ for all x.
- If p is smallest positive constant of this type, then p is called the period of the function $\mathrm{f}(\mathrm{x})$.
- If $f(x)$ is a periodic function with period p , then $1 / \mathrm{f}(\mathrm{x})$ is also a periodic function with period p .

Check Your Progress

Q1 The value of $\frac{\pi}{5}$ radians is equal to:
(A) 18°
(B) 36°
(C) 45°
(D) 90°

Q2 In a triangle two angles are 50° and
70°. The measure of third angle of the triangle in radian is:
(A) $\frac{\pi}{2}$
(B) $\frac{2 \pi}{3}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$

Q3 The angle in radians subtended by an arc of length 20 cm at the center of a circle of radius 45 cm is equal to:
(A) $\frac{9}{4}$ radians
(B) $\frac{4}{9}$ radians
(C) $\frac{2}{3}$ radians
(D) $\frac{3}{2}$ radians

Q4 The minimum value of $\sin \theta$ is equal to:
(A) 1
(B) 0
(C) 2
(D) -1

Q5 In which point, the graph of $\tan \theta$ is discontinuous?
(A) $\frac{\pi}{2}$
(B) π
(C) $\frac{\pi}{4}$
(D) 2π

Stretch yourself

Q1 Draw the graph of $\cos \theta$ where θ varies from 0 to 2π, write any two major observations.

Q2 Prepare a table to write the values of trigonometric functions $\sin \theta, \cos \theta \& \tan \theta$ where θ takes values 0 , $\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3} \& \frac{\pi}{2}$

Q3 Draw the graph of $\tan \theta$ and write any two observations.

Q4 Find the period of
(i) $x=3 \sin 2 y$ (ii) $x=\cos \frac{y}{2}$

Q5 Write the periods of trigonometric functions
(i) $\sin x$ and
(ii) $\cos x$

Answer to Check your Progress

Q1(B)
$\frac{\pi}{5}$ radians
$=\left(\frac{360}{2 \pi} \times \frac{\pi}{5}\right)^{o}$
$=36^{\circ}$
Q2 (B)
$3^{\text {rd }}$ angle
$=60^{\circ}$
In radian
$\Rightarrow \frac{2 \pi}{360^{\circ}} \times 6^{\circ}$
$=\frac{\pi}{3}$ radians
Q3 (B)
$\theta=\frac{l}{r}$
$=\frac{20}{45}$ radians
$=\frac{4}{9}$ radians
Q4 (D)
Q5(A)

Answer to stretch yourself

Q 1 Draw the graph
(i) minimum value of $\cos \theta=-1$ and maximum $=1$
(ii)It is continuous in every where

Q 2 Prepare the table and write the value table and write the values of $\sin \theta, \cos \theta \& \tan \theta$

Q 3
(i) The value of $\tan \theta$ lies between $-\infty+0+\infty$
(ii)Its period is π
Q 4
(i) π (ii) 4π

Q 5
(i) $\sin x=\sin (x+2 n \pi)$ where $n=0, \pm 1$,
.......
(ii) $\cos x=\cos (x+2 n \pi)$ where $n=0, \pm 1 \pm 2, \ldots \ldots$.

