Senior Secondary Course Learner's Guide, Mathematics, (311)

TRIGONOMETRIC FUNCTIONS-I

Circular Measure of Angle

- An angle is a union of two rays with the common end point. An angle is formed by the rotation of a ray as well.
- Negative and positive angles are formed according as the rotation is clockwise or anticlock-wise.

A Unit Circle

- when a line segment makes one complete rotation, its end point describes a circle.
- In case the length of the rotating line be one unit then the circle described will be a circle of unit radius. Such a circle is termed as **unit circle**.

A radian

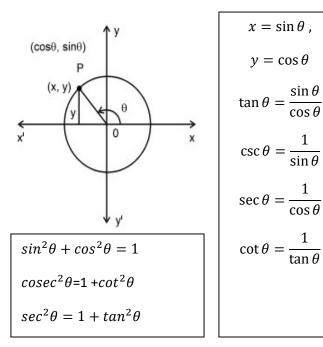
• A radian is the measure of an angle subtended at the centre of a circle by an arc equal in length to the radius (r) of the circle

Relation between Degree and Radian

 An arc of unit length subtends an angle of 1 radian. The circumference 2π subtendan angle of 2π radian

Relation Between Length of an Arc and Radius of the Circle

• The angle subtended by an arc of a circle at the center of the circle

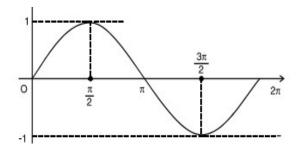

Is give by the ratio of the length of the arc and the radius of the circle.

•
$$\theta = \frac{l}{r}$$

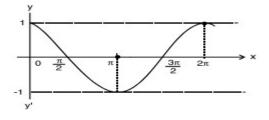
TRIGONOMETRIC FUNCTIONS

I	II	III	IV	t
Quadrant	Quadrant	Quadrant	Quadran	
All	Sin,cosec	tan,cot	cos ,sec	
Positive	Positive	Positive	Positive	

Relation Between Trigonometric Functions

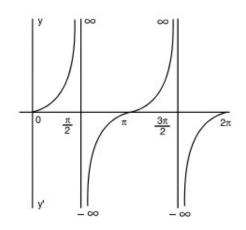

Trigonometric Functions Of Some Specific Real Numbers

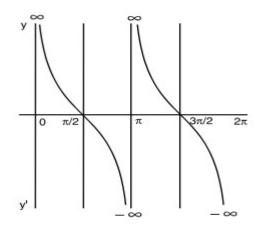
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N.D.


Graphs of Trigonometric Functions

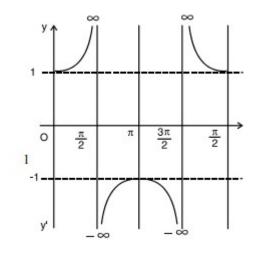
- The importance of the graph of functions stems from the fact that this is a convenient way of presenting many properties of the functions.
- By observing the graph we can examine several characteristic properties of the functions such as
 - A. periodicity,
 - B. intervals in which the function is increasing or decreasing
 - C. symmetry about axes,
 - D. maximum and minimum points of the graph in the given interval

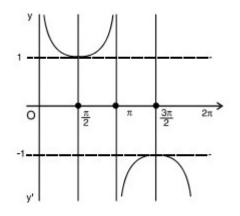
Graphs of Trigonometric function


	sin	cos	tan	cosec	sec	cot
0	0	1	0	ND	1	ND
	0	1	0	ND	1	
$\frac{\pi}{6}$	0.5	0.87	0.58	2	1.15	1.73
$\frac{\pi}{3}$	0.87	0.5	+N.D.	1.5	2	0.58
$\frac{\pi}{2}$	1	0	-1.73	1	-ND	0
$\frac{2\pi}{3}$	0.87	0.5	-0.58	1.15	-2	58
$\frac{5\pi}{6}$	0.5	- 0.87	0	2	- 1.15	- 1.73
π	0	-1	0.58	-ND	-1	ND
$\frac{7\pi}{6}$	-0.5	- 0.87	1.73	-2	- 1.15	1.73
$\frac{4\pi}{3}$	- 0.87	-0.5	+	-1.15	-2	.58
$\frac{3\pi}{2}$	-1	0	-1.73	-1	-ND	0
$\frac{5\pi}{3}$	- 0.87	0.5	-0.58	-1.15	2	58
$\frac{11\pi}{6}$	-0.5	0.87	0	2	1.15	- 1.73
2π	0	1	0	-ND		-ND


Variation of $\cos \theta$ from 0 to 2π

Variation of $\sin\theta$ from 0 to 2π


Senior Secondary Course Learner's Guide, Mathematics, (311)


Variation of tan θ from 0 to 2π

Variation of $\cot \theta$ from 0 to 2π

Variation of sec θ from 0 to 2π

Variation of cosec θ varies from 0 to 2π

PERIODICITY OF THE TRIGONOMETRIC FUNCTIONS

- A function f (x) is said to be periodic if its value is unchanged when the value of the variable is increased by a constant, that is
- if f(x + p) = f(x) for all x.
- If p is smallest positive constant of this type, then p is called the period of the function f (x).
- If f (x) is a periodic function with period p, then 1/ f(x) is also a periodic function with period p.

Check Your Progress

- Q1 The value of $\frac{\pi}{5}$ radians is equal to:
 - (A) 18°
 - (B) 36°
 - (C) 45°
 - (D) 90°

Q2 In a triangle two angles are 50° and

 70° . The measure of third angle of the triangle in radian is:

(A)
$$\frac{\pi}{2}$$

(B) $\frac{2\pi}{3}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$

Q3 The angle in radians subtended by an arc of length 20cm at the center of a circle of radius 45cm is equal to:

(A)
$$\frac{9}{4}$$
 radians
(B) $\frac{4}{9}$ radians
(C) $\frac{2}{3}$ radians
(D) $\frac{3}{2}$ radians

- Q4 The minimum value of $\sin \theta$ is equal to:
 - (A) 1 (B) 0 (C) 2
 - (D) -1
- Q5 In which point, the graph of $\tan \theta$ is discontinuous?

(A)	$\frac{\pi}{2}$
(B)	π

- (C)
- $\frac{\pi}{4}$ (D) 2π

Stretch yourself

Q1 Draw the graph of $\cos\theta$ where θ varies from 0 to 2π , write any two major observations.

Q2 Prepare a table to write the values of trigonometric functions $\sin\theta$, $\cos\theta$ & $\tan\theta$ where θ takes values 0,

$$\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3} & \& \frac{\pi}{2}$$

Q3 Draw the graph of $\tan \theta$ and write any two observations.

Q4 Find the period of

(i) $x = 3\sin 2y$ (ii) $x = \cos \frac{y}{2}$

Q5 Write the periods of trigonometric functions

- (i) $\sin x$ and
- (ii) $\cos x$

Answer to Check your Progress

Q1(B)

$$\frac{\pi}{5} \text{ radians}$$
$$= \left(\frac{360}{2\pi} \times \frac{\pi}{5}\right)^{\circ}$$
$$= 36^{\circ}$$

Q2 (B)

3rd angle $= 60^{\circ}$ In radian

Senior Secondary Course Learner's Guide, Mathematics, (311)

$$\Rightarrow \frac{2\pi}{360^{\circ}} \times 6^{\circ}$$

$$= \frac{\pi}{3} \text{ radians}$$
Q3 (B)

$$\theta = \frac{l}{r}$$

$$= \frac{20}{45} \text{ radians}$$

$$= \frac{4}{9} \text{ radians}$$
Q4 (D)

Q5(A)

Answer to stretch yourself

Q 1 Draw the graph

- (i) minimum value of $\cos \theta = -1$ and maximum = 1
- (ii)It is continuous in every where

Q 2 Prepare the table and write the value table and write the values of $\sin \theta$, $\cos \theta \& \tan \theta$

Q 3 (i) The value of $\tan \theta$ lies between $-\infty + 0 + \infty$ (ii) Its period is π

Q 4 (i) π (ii) 4 π

Q 5 (i) $\sin x = \sin(x+2n\pi)$ where $n = 0, \pm 1,$ (ii) $\cos x = \cos(x+2n\pi)$ where $n = 0, \pm 1 \pm 2, \dots$