Differential Equation

An equation containing an independent variable, dependent variable and differential coefficients of dependent variable with respect to independent variable is called a differential equation.
For Example-
(i) $\frac{d y}{d x}=\sin x$
(ii) $\frac{d y}{d x}+x y=\cot x$
(iii) $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=x^{2}$
(iv) $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x^{2}\left(\frac{d y}{d x}\right)^{3}=0$
(v) $\frac{d^{2} y}{d x^{2}}+\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=0$

Order of differential equation

The order of a differential equation is the order of the highest derivative occurring in the differential equation.

Degree of differential equation

The degree of a differential equation is the degree of the highest order derivative when differential coefficients are free from radical and fraction

The general and $\mathrm{n}^{\text {th }}$ order differential equation is given below -
$P_{0} \frac{d^{n} y}{d x^{n}}+P_{1} \frac{d^{n-1} y}{d x^{n-1}}+P_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+P_{n-1} \frac{d y}{d x}+P_{n}$ $y=Q$
where $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . . ., \mathrm{P}_{\mathrm{n}-1}$ and Q are either constants or functions of independent variable x .

Those equations which are not linear are called non- linear differential equations.

FORMATION OF A DIFFERENTIAL EQUATION

(i) Write down the given equation.
(ii) Differentiate it successively with respect to x that number of times equal to the arbitrary constants.
(iii) Hence on eliminating arbitrary constants results a differential equation which involves

$$
x, y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}} \ldots \ldots .
$$

Differential equations of the form $\frac{d y}{d x}=$ $\mathrm{f}(\mathbf{x})$.
$\frac{d y}{d x}=f(x) \Rightarrow d y=f(x) d x$.
Integrating both sides we obtain

$$
\begin{aligned}
& \int d y=\int f(x) d x+c \\
& \text { or } y=\int f(x) d x+c
\end{aligned}
$$

Differential equations of the form $d y / d x=f(x) g(y)$
$\frac{d y}{d x}=f(x) g(y)$
$\int \frac{d y}{g(y)}=\int f(x) d x+c$.

Differential Equation of homogeneous

type
An equation in x and y is said to be homogeneous if it can be put in the form $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$ where $f(x, y)$ and $g(x, y)$ are both homogeneous functions of the same degree in x \& y.
So to solve the homogeneous differential equation $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$, substitute $y=v x$ and
so $\frac{d y}{d x}=v+x \frac{d v}{d x}$
Thus $v+x \frac{d v}{d x}=f(v) \square \frac{d x}{x}=\frac{d v}{f(v)-v}$
Therefore solution is $\int \frac{d x}{x}=\int \frac{d v}{f(v)-v}+c$

Check Your Progress

1. A differential equation of first order and first degree is-
(A) $x^{\left(\frac{d y}{d x}\right)^{2}}-x+a=0$
(B) (B) $\frac{\mathrm{d}^{2} y}{d x^{2}}+x y=0$
(C) $d y+d x=0$
(D) None of these
2. The order and degree of differential equation
$\sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0$ are respectively-
(A) 1,2
(B) 1,1
(C) 2, 1
(D) 2, 2
3. Which of the following equation is linear?
(A) $\frac{\frac{d y}{d x}}{d x y^{2}=1}$
(B) $x^{2} \frac{d y}{d x}+y=e^{x}$
(C) $\frac{d y}{d x}+3 y=x y^{2}$
(D) $x^{\frac{d y}{d x}}+y^{2}=\sin x$
4. Which of the following equation is non- linear-
(A) $\frac{\frac{d y}{d x}}{d x}=\cos x$
(B) $\frac{d^{2} y}{d x^{2}}+y=0$
(C) $d x+d y=0$
(D) $x \frac{d y}{d x}+\frac{3}{d y / d x}=y^{2}$
5. $\mathrm{y}=4 \sin 3 \mathrm{x}$ is a solution of the differential equation-
(A) $\frac{\frac{d y}{d x}}{d y}=0$
(B) $\frac{\frac{d y}{d x}}{d x}-8 y=0$
(C) $\frac{\frac{d^{2} y}{d x^{2}}}{}+9 y=0$
(D) $\frac{\frac{d^{2} y}{d x^{2}}}{}-9 y=0$
6. The differential equation of the family of curves represented by the equation $x^{2}+y^{2}=a^{2}$ is-
(A) $x+y^{\frac{d y}{d x}}=0$
(B) $y^{\frac{d y}{d x}}=x$
(C) $y^{\frac{d^{2} y}{d x^{2}}}+\left(\frac{d y}{d x}\right)^{2}=0$
(D) None of these
7. The general solution of the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$ is-
(A) $x^{3}-y^{3}=c$
(B) $x^{3}+y^{3}=c$
(C) $x^{2}+y^{2}=c$
(D) $x^{2}-y^{2}=c$
8. The general solution of the equation $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$ is-
(A) $\left(\mathrm{e}^{\mathrm{y}}+1\right) \cos \mathrm{x}=\mathrm{c}$
(B) $\left(\mathrm{e}^{\mathrm{y}}-1\right) \sin \mathrm{x}=\mathrm{c}$
(C) $\left(e^{y}+1\right) \sin x=c$
(D)None of these
9. The solution of the differential equation

$$
d y=\sec ^{2} x d x \text { is }-
$$

(A) $y=\sec x \tan x+c$
(B) $y=2 \sec x+c$
(C) $\mathrm{y}=\frac{1}{2} \tan \mathrm{x}+\mathrm{c}$
(D) None of these
10. The solution of the equation $\frac{d y}{d x}=(x$ $+y)^{2}$ is-
(A) $x+y+\tan (x+c)=0$
(B) $x-y+\tan (x+c)=0$
(C) $x+y-\tan (x+c)=0$
(D) None of these
11. The solution of the differential equation

$$
\frac{d y}{d x}=\cot ^{2}(x+y) \text { is- }
$$

$$
\text { (A) } y=x+1 / 2 \sin 2(x+y)+c
$$

(B) $y=x-1 / 2 \sin 2(x+y)+c$
(C) $y=x+1 / 2 \cos 2(x+y)-c$
(D)None of these
12. The solution of the differential equation,
$\frac{d y}{d x}+\frac{y}{x}=x^{2}$ is-
(A) $4 x y=x^{4}+c$
(B) $x y=x^{4}+c$
(C) $\frac{1}{4} x y=x^{4}+c$
(D) $x y=4 x^{4}+c$
13. The solution of the differential equation
$\frac{d y}{d x}+y=\cos x$ is-
(A) $y=\frac{1}{2}(\cos x+\sin x)+\mathrm{ce}^{-}$ x
(B) $\mathrm{y}=\frac{1}{2}(\cos \mathrm{x}-\sin \mathrm{x})+\mathrm{ce}^{-}$ x
(C) $y=\cos x+\sin x+c e^{-x}$
(D) None of these
14. The integrating factor of the differential equation $(x \log x) \frac{d y}{d x}+y$ $=2 \log \mathrm{x}$ is-
(A) $\log x$
(B) $\log (\log x)$

Stretch Yourself

Find

1. The solution of the equation

$$
\left(1-x^{2}\right) d y+x y d x=x y^{2} d x
$$

2. The solution of

$$
\frac{d y}{d x}=\frac{e^{x}\left(\sin ^{2} x+\sin 2 x\right)}{y(2 \log y+1)}
$$

3. The solution of

$$
\left(x^{\sqrt{1+y^{2}}}\right) d x+\left(y \sqrt{1+\mathrm{x}^{2}}\right) d y=0
$$

4. The solution of the differential equation
5. $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$
6. The solution of $y d x-x d y+3 x^{2} e^{x^{3}}$ $y^{2} d x=0$
7. The solution of the differential equation

$$
x d y-y d x=\sqrt{x^{2}+y^{2}} d x
$$

Hint to Check Your Progress

1C \quad 2B $\quad 3 \mathrm{~B} \quad 4 \mathrm{D} \quad 5 \mathrm{C}$
6A 7A 8C 9D 10C
11 A 12A 13 A 14A 15C

