33

INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

Let O be a fixed point known as origin and let OX, OY and OZ be three mutually perpendicular lines, taken as x-axis, y axis and z -axis respectively in such a way that they form a right - handed system.

The planes XOY, YOZ and ZOX are known as xy-plane, yz-plane and $z x-$ plane respectively.
Let P be a point in space and distances of P from $y z, ~ z x$ and $x y$-planes be x, y, z respectively (with proper signs), then we say that coordinates of P are ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Also $\mathrm{OA}=\mathrm{x}, \mathrm{OB}=\mathrm{y}, \mathrm{OC}=\mathrm{z}$.

Distance Formula

If $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are two points, then distance between them $\mathrm{PQ}=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}+\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}}$

In particular distance of a point (x, y, z) from origin $=\sqrt{x^{2}+y^{2}+z^{2}}$.

Section Formula

Coordinates of the point dividing the line joining two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ in the ratio $\mathrm{m}_{1}: \mathrm{m}_{2}$ are

(i) In case of internal division
2. Distance of the point (x, y, z) from y axis is-
(A) y
(B) $\sqrt{x^{2}+y^{2}}$
(C) $\sqrt{y^{2}+z^{2}}$
(D) $\sqrt{\mathrm{z}^{2}+\mathrm{x}^{2}}$
(ii) In case of external division
$\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}, \frac{m_{1} z_{2}-m_{2} z_{1}}{m_{1}-m_{2}}\right)$
Coordinates of the Mid point :
When division point is the midpoint of PQ , then ratio will be $1: 1$; hence coordinates of the midpoint of PQ are $\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}\right)$

Centroid of a Triangle :

If $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right.$, z_{3}) be the vertices of a triangle, then the centroid of the triangle is

$$
\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)
$$

Check Your Progress

1. The points $\mathrm{A}(1,-1,-5), \mathrm{B}(3,1,3)$ and $C(9,1,-3)$ are the vertices of-
(A) an equilateral triangle
(B) an isosceles triangle
(C) a right angled triangle
(D) none of these
2. The distance of a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from yz plane is-
(A) x
(B) y
(C) z
(D) $x+y+z$
3. A point which lie in yz plane, the sum
of co-ordinate is 3 , if distance of point from $x z$ plane is twice the distance of point from $x y$ plane, then coordinates are-
(A) $(1,2,0)$
(B) $(0,1,2)$
(C) $(0,2,1)$
(D) $(2,0,1)$
4. A point located in space is moves in such a way that sum of distance from $x y$ and $y z$ plane is equal to distance from zx plane the locus of the point are-
(A) $x-y+z=2$
(B) $x+y-z=0$
(C) $x+y-z=2$
(D) $x-y+z=0$
5. A $(1,3,5)$ and $B(-2,3,-4)$ are two points, A point P moves such that $\mathrm{PA}^{2}-\mathrm{PB}^{2}=6 \mathrm{c}$, then locus of P is-
(A) $\mathrm{x}+3 \mathrm{z}+1-\mathrm{c}=0$
(B) $\mathrm{x}+3 \mathrm{z}-1+\mathrm{c}=0$
(C) $2 \mathrm{x}+3 \mathrm{z}+1-\mathrm{c}=0$
(D) $2 \mathrm{x}+3 \mathrm{z}-1+\mathrm{c}=0$
6. Find the ratio in which the segment joining
$(1,2,-1)$ and $(4,-5,2)$ is divided by the plane $2 \mathrm{x}-3 \mathrm{y}+\mathrm{z}=4$.
(A) $2: 1$
(B) $3: 2$
(C) $3: 7$
(D) $1: 2$
7. If points $\mathrm{A}(3,2,-4) ; \mathrm{B}(5,4,-6)$ and $C(9,8,-10)$ are collinear then B divides AC in the ratio-
(A) $2: 1$
(B) $1: 2$
(C) $2: 3$
(D) $3: 2$
8. If zx plane divides the line joining the points $(1,-1,5)$ and $(2,3,4)$ in the ratio m:1 then mequals to-
(A) $1 / 3$
(B) 3
(C) -3
(D) $-1 / 3$
9. OABC is a tetrahedron whose vertices are
$\mathrm{O}(0,0,0) ; \mathrm{A}(\mathrm{a}, 2,3) ; \mathrm{B}(1, \mathrm{~b}, 2)$ and $\mathrm{C}(2,1, \mathrm{c})$ if its centroid is $(1,2,-1)$ then distance of point (a, b, c) from origin are-
(A) $\sqrt{14}$
(B) $\sqrt{107}$
(C) $\sqrt{107 / 14}$
(D) None of these
10. The ratio in which the yz-plane divides the join of the points $(-2,4$, $7)$ and ($3,-5,8$) is-
(A) $2: 3$
(B) $3: 2$
(C) $-2: 3$
(D) $4:-3$
11. A $(3,2,0), \mathrm{B}(5,3,2)$ and $\mathrm{C}(-9,6,-$ 3) are vertices of a triangle $A B C$. If the bisector of $\angle \mathrm{A}$ meets BC at D , then its coordinates are-
(A) $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
(B) $\left(-\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
(C) $\left(\frac{19}{8}, \frac{57}{16},-\frac{17}{16}\right)$
(D $\left(-\frac{19}{8},-\frac{57}{16}, \frac{17}{16}\right)$
12. If origin is the centroid of the triangle ABC with vertices $\mathrm{A}(\mathrm{a}, 1,3), \mathrm{B}(-2, \mathrm{~b}$, $-5)$ and $C(4,7, c)$ then values of a, b, c are respectively-
(A) 2, 8, 2
(B) $0,2,2$
(C) $-2,-8,2$
(D) None of these
13. The line joining the points $(2,-3,1)$ and
($3,-4,-5$) and cuts the plane $2 \mathrm{x}+\mathrm{y}$ $+\mathrm{z}=7$ in those points, the point are-
(A) $(1,2,7)$
(B) $(-1,2,7)$
(C) $(1,-2,7)$
(D) $(1,-2,-7)$
14. The vertices of a triangle ABC are $\mathrm{A}(4,3,-2), \mathrm{B}(3,0,1)$ and $\mathrm{C}(2,-1$, 3), the length of the median drawn from point 'A' -
(A) $\frac{1}{2} \sqrt{122}$
(B) $\sqrt{122}$
(C) $\frac{1}{3} \sqrt{122}$
(D) None of these

Hint to Check Your Progress
$1 \mathrm{~A} \quad 2 \mathrm{D} \quad 3 \mathrm{~A} \quad 4 \mathrm{C} \quad 5 \mathrm{D}$
6B 7C $\quad 8 \mathrm{~B} \quad 9 \mathrm{~A} \quad 10 \mathrm{~B}$
$11 \mathrm{~A} \quad 12 \mathrm{~A} \quad 13 \mathrm{C} \quad 14 \mathrm{C} \quad 15 \mathrm{~A}$

