Straight line

Cartesian equation of a line passing through a given point and given direction ratio

Cartesian equation of a straight line passing through a fixed point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios a, b, c is $\frac{x-x_{1}}{a}=$ $\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
(1) The parametric equations of the line $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{a}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{c}}$ are $\mathrm{x}=\mathrm{x}_{1}+$ $\mathrm{a} \lambda, \mathrm{y}=\mathrm{y}_{1}+\mathrm{b} \lambda, \mathrm{z}=\mathrm{z}_{1}+\mathrm{c} \lambda$, where λ is the parameter.
(2) The coordinates of any point on the line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ are $\left(x_{1}+a \lambda, y_{1}+b \lambda, z_{1}+c \lambda\right)$, where $\lambda \in R$.
(3) Since the direction cosines of a line are also direction ratios, therefore equation of a line passing through ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and having
direction cosines $\ell, \mathrm{m}, \mathrm{n}$ is

$$
\frac{x-x_{1}}{\ell}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}
$$

(4) Since x, y and $z-$ axis passes through the origin and have direction cosines
$1,0,0 ; 0,1,0$ and $0,0,1$ respectively. Therefore their equations are x -axis $: \frac{x-0}{1}=\frac{y-0}{0}=\frac{z-0}{0}$ or $y=0$ and z $=0$
y - axis : $\frac{x-0}{0}=\frac{y-0}{1}=\frac{z-0}{0}$ or $x=0$ and $\mathrm{z}=0$
z- axis : $\frac{\mathrm{x}-0}{0}=\frac{\mathrm{y}-0}{0}=\frac{\mathrm{z}-0}{1}$ or $\mathrm{x}=$
0 and $\mathrm{y}=0$

Cartesian Equation of a line Passing Through Two Given Points

The cartesian equation of a line passing through two given points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$) is given by

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Perpendicular distance

Perpendicular Distance of Cartesian Form : To find the perpendicular distance of a given point (α, β, γ) from a given line
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{a}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{c}}$
Let L be the foot of the perpendicular drawn from $P(\alpha, \beta, \gamma)$ on the line $\frac{x-x_{1}}{a}=$ $\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{c}}$
Let the coordinates of L be $\left(x_{1}+a \lambda_{1,}, y_{1}+b \lambda_{,}, z_{1}+c \lambda_{1}\right)$. Then direction ratios of PL are $\mathrm{x}_{1}+\mathrm{a} \lambda,-\alpha$,, $y_{1}+b \lambda,-\beta, z_{1}+c \lambda,-\gamma$.
Direction ratio of $A B$ are a, b, c. Since $P L$ is perpendicular to $A B$, therefore

$$
\begin{aligned}
& \left(x_{1}+a \lambda-\alpha\right) a+\left(y_{1}+b \lambda-\beta\right) \\
& \quad b+\left(z_{1}+c \lambda-\gamma\right) c \\
& =0 \\
& \Rightarrow \lambda=\frac{a\left(\alpha-x_{1}\right)+b\left(\beta-y_{1}\right)+c\left(\gamma-z_{1}\right)}{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

$$
\underset{\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}}{\frac{P}{c}(\alpha, \beta, \gamma)} \quad\left(x_{1}+a \lambda, y_{1}+b \lambda, z_{1}+c \lambda\right)
$$

Putting this value of λ in $\left(x_{1}+a \lambda, y_{1}+\right.$ $b \lambda, z_{1}+c \lambda$), we obtain coordinates of L. Now, using distance formula we can obtain the length PL

Skew Lines

Two straight lines in a space which are neither parallel nor intersecting are called skew-lines. Thus, the skew lines are those lines which do not lie in the same plane.
(i) Shortest distance between two skew straight lines: If ℓ_{1} and ℓ_{2} are two skew lines, then there is one and only one line perpendicular to each of lines ℓ_{1} and ℓ_{2} which is known as three line of shortest distance.
Here, distance PQ is called to be shortest distance.

Vector form :
Let ℓ_{1} and ℓ_{2} be two lines whose equations are: $\vec{r}=\overrightarrow{a_{1}}+\lambda \vec{b}_{1}$ and $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}}_{2}$ respectively clearly ℓ_{1} and ℓ_{2} pass through the points A and
B with position vectors $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$ respectively and are parallel to the vectors $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$ respectively
Distance $\overrightarrow{\mathrm{PQ}}=\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right|$

Condition for lines to intersect

The two lines are intersecting if ;

$$
\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|=0
$$

$\sqsubset \quad\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=0$

$$
\sqsubset \quad\left[\overrightarrow{\mathrm{b}_{1}} \overrightarrow{\mathrm{~b}_{2}}\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)\right]=0
$$

Cartesian form :

Let the two skew lines be :

$$
\begin{aligned}
\frac{x-x_{1}}{a_{1}} & =\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \\
\text { and } \frac{x-x_{2}}{a_{2}} & =\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
\end{aligned}
$$

$$
\text { shortest distance }=\left|\frac{\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|
$$

$\mathrm{d}=$

$$
\frac{\left|\begin{array}{ccc}
\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2}
\end{array}\right|}{\sqrt{\left(\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right)^{2}+\left(\mathrm{n}_{1} \ell_{2}-\mathrm{n}_{2} \ell_{1}\right)^{2}+\left(\ell_{1} \mathrm{~m}_{2}-\ell_{2} \mathrm{~m}_{1}\right)^{2}}}
$$

Conditions for lines to intersect

The lines are intersecting, if shortest distance $=0$

$$
\left|\begin{array}{ccc}
\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2}
\end{array}\right|=0
$$

(ii) Distance between parallel lines : Let
ℓ_{1} and ℓ_{2} are two parallel lines whose equations are

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}} \text { and } \quad \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}}
$$

respetively

Clearly, ℓ_{1} and ℓ_{2} Pass through the points A and B with position vectors $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$ respectively and both are parallel to the vector \vec{b}, where $B M$ is the shortest distance between ℓ_{1} and ℓ_{2}
shortest distance between parallel lines :
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}} \quad$ is :
$\mathrm{d}=\frac{\left|\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right) \times \overrightarrow{\mathrm{b}}\right|}{|\overrightarrow{\mathrm{b}}|}$

Check Your Progress

1. If $\frac{x-1}{\ell}=\frac{y-2}{m}=\frac{z+1}{n}$ is the equation of the line through $(1,2,-1) \&(-$ $1,0,1)$, then (ℓ, m, n) is-
(A) $(-1,0,1)$
(B) $(1,1,-1)$
(C) $(1,2,-1)$
(D) $(0,1,0)$
2. If the angle between the lines whose direction ratios are $2,-1,2$ and $\mathrm{a}, 3,5$ be 45°, then $\mathrm{a}=$
(A) 1
(B) 2
(C) 3
(D) 4
3. The co-ordinates of the foot of the perpendicular drawn from the point

A $(1,0,3)$ to the join of the point B $(4,7,1)$ and $\mathrm{C}(3,5,3)$ are-
(A) $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$
(B) $(5,7,17)$
(C) $\left(\frac{5}{3},-\frac{7}{3}, \frac{17}{3}\right)$
(D) $\left(-\frac{5}{3}, \frac{7}{3},-\frac{17}{3}\right)$
4. The length of the perpendicular from $\operatorname{point}(1,2,3)$ to the line $\frac{x-6}{3}=$ $\frac{y-7}{2}=\frac{z-7}{-2}$ is-
(A) 5
(B) 6
(C) 7
(D) 8
5. The perpendicular distance of the point $(2,4,-1)$ from the line $\frac{x+5}{7}=$ $\frac{y+3}{4}=\frac{z-6}{-9}$ is -
(A) 3
(B) 5
(C) 7
(D) none of these
6. The point of intersection of line $\frac{x-4}{5}$

$$
=\frac{y-1}{2}=\frac{z}{1} \text { and } \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \text { is - }
$$

(A) $(-1,-1,-1)$
(B) $(-1,-1,1)$
(C) $(1,-1,-1)$
(D) $(-1,1,-1)$
7. The shortest distance between the lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=$ $\frac{\mathrm{z}-6}{4}$ is
(A) $\sqrt{30}$
(B) $2 \sqrt{30}$
(C) $5 \sqrt{30}$
(D) $3 \sqrt{30}$
8. The straight lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$

$$
\text { and } \frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{-2} \text { are- }
$$

(A) parallel lines
(B) intersecting at 60°
(C) skew lines
(D) intersecting at right angle
9. The equation of yz-plane is-
(A) $x=0$
(B) $y=0$
(C) $\mathrm{z}=0$
(D) $x+y+z=0$
10. If the length of perpendicular drawn from origin on a plane is 7 units and its direction ratios are $-3,2,6$, then that plane is-
(A) $-3 x+2 y+6 z-7=0$
(B) $-3 x+2 y+6 z-49=0$
(C) $3 x-2 y+6 z+7=0$
(D) $-3 x+2 y-6 z-49=0$

6A 7D 8D 9A 10B

Stretch Yourself

1. Find the foot of the perpendicular drawn from the point $\mathrm{P}(1,0,3)$ to the join of points $\mathrm{A}(4,7,1)$ and B $(3,5,3)$ is -
2. Find the equation of the plane containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point ($0,7,-7$)
3. Find the distance of the point $(1,-2$,
3) from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z-1}{-6}$
4. Find the points on the line $\frac{x+1}{1}=$ $\frac{y+3}{3}=\frac{z-2}{-2}$ distant $\sqrt{(14)}$ from the point in which the line meets the plane $3 x+4 y+5 z-5=0$
5. The lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\quad \frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar and then find the equation to the plane in which they lie,

Hint to Check Your progress
$\begin{array}{llllll}1 B & 2 & \text { D } & 3 A & 4 C & 5 D\end{array}$

