7

Some Special Sequences

Series:

- A series is associated with Sequence. A series is a sum of terms with definite order.
- An expression of the form $u_{1}+u_{2}+$ $\cdots . . u_{n}$ is called series, where $u_{1}, u_{2} \ldots .$. is a sequence of numbers.
Denoted by $\sum_{r=1}^{n} u_{r}$
If n is finite then the series is finite series, otherwise the series is infinite.
- Sum of the powers of the first n-natural numbers

$$
\mathrm{Sn}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}
$$

- Sum of squares of the first n-natural numbers

$$
\begin{aligned}
& \mathrm{Sn}=1^{2}+2^{2}+3^{2}+\cdots+n^{2} \\
& \mathrm{Sn}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6} \\
& \sum \mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}
\end{aligned}
$$

- The sum of the Cubes of the first n-natural numbers

$$
\begin{aligned}
& \mathrm{Sn}=1^{3}+2^{3}+3^{3}+---\mp \mathrm{n}^{3} \\
& \sum \mathrm{n}^{3}=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]
\end{aligned}
$$

- The sum of the series the n tn term of the series (tn), $\mathrm{Sn}=\sum \mathrm{tn}$

Find the sum of the following series to n terms

1. $\frac{1^{2}}{1}+\frac{1^{2}+2^{2}}{1+3}+\frac{1^{2}+2^{2}+3^{2}}{1+3+5}+\cdots$.
2. $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+$ \cdots.
3. 1.2.4+2.3.7+3.4.10+
4. $1+(1+2)+(1+2+3)+$ $(1+2+3+4) \ldots .$.
5. $1 \cdot 2 \cdot 5+2 \cdot 3 \cdot 6+3 \cdot 4 \cdot 7+\ldots \ldots$.
6. $5+7+13+31+85+\ldots$
7. $2+4+7+11+16+\ldots$.
8. $2^{2}+4^{2}+6^{2}+\cdots \ldots$.
9. $1.2^{2}+2.3^{2}+3.4^{2}+\cdots .$.
10. $2+10+30+68+130+\ldots .$.

Hint to check yourself

1. $\frac{n}{24}\left(2 n^{2}+9 n+12\right)$
2. $\frac{n}{12}\left(n+1^{2}\right)(n+2)$
3. $\frac{n}{12}(n+1)\left(9 n^{2}+25 n+14\right)$
4. $\frac{n}{6}(n+1)(n+2)$
5. $\frac{n}{12}(n+1)\left(3 n^{2}+23 n+34\right)$
6. $\frac{1}{2}\left(3^{n}+8 n-1\right)$
7. $\frac{n}{6}\left(n^{2}+3 n+8\right)$
8. $\frac{2 n}{3}(n+1)(2 n+1)$
9. $\frac{n}{2}(n+1)(n+2)(3 n+5)$
10. $\frac{n}{4}(n+1)\left(n^{2}+n+2\right)$
