Complex Numbers

- Complex Number

Any number which can be expressed in the form of $a+b i$ where $i=\sqrt{-1}$ and a, b are real number is called as complex number. It is denoted as $\mathrm{Z}=\mathrm{a}+\mathrm{bi}$

For example $\mathrm{Z}=3+7 \mathrm{i}$ is a complex number.

- Positive Integral powers of \mathbf{i}

$$
\begin{aligned}
& \mathrm{i}=\sqrt{-1=\mathrm{i}} \\
& \mathrm{i}^{2}=(\sqrt{-1})^{2}=-1 \\
& \mathrm{i}^{3}=2^{2} \cdot 2=(-1) \cdot \mathrm{i}=-2 \\
& 2^{4}=\left(2^{2}\right)^{2}=(-1)^{2}=1
\end{aligned}
$$

If n is a positive integer such that $\mathrm{n}>4$, then to find 2^{n}, we first divide n by 4

- Conjugate of a Complex Number

The conjugate of a complex number is obtained by changing the sign of the imaginary part.

Let $\mathrm{Z}=\mathrm{a}+\mathrm{b} \mathrm{i}$, be the complex number $\overline{\mathrm{Z}}=\mathrm{a}-\mathrm{b} \mathrm{i}$, is the conjugate of Z
(i) The conjugate of a real number is the number $1+$ self. $Z=\bar{Z}$
(ii) If Z is a purely imaginary number then $\bar{Z}=-Z$.
(iii) Conjugate of the conjugate of a complex number is the number itself i.e. ($\bar{Z})=Z$

- Modules of a Complex number

$\mathrm{Z}=\mathrm{a}+\mathrm{bi}$, be the complex number $|\mathrm{Z}|$ is the modulus of Z is given by $|\mathrm{Z}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
(i) $|\mathrm{Z}|=0<=>Z=0$
(ii) $|\mathrm{Z}|=|\overline{\mathrm{Z}}|$
(iii) $|Z|=|-Z|$

- Equality of Two Complex Numbers

Two complex number are equal, if and only if their real parts and imaginary parts are respectively equal.

If $\quad a+b i=c+d i$, then

$$
a=c \text { and } b=d
$$

- Operations on Complex Numbers

(A) Addition of Complex Numbers

If $\mathrm{Z}_{1}=\mathrm{a}+\mathrm{bi}$ and $\mathrm{Z}_{2}=\mathrm{c}+\mathrm{di}$ are two complex numbers, then their addition is defined as

$$
\mathrm{Z}_{1}+\mathrm{Z}_{2}=(\mathrm{a}+\mathrm{c})+\mathrm{i}(\mathrm{~b}+\mathrm{d})
$$

(B) Subtraction of Complex Numbers

To subtract a complex number from another, the corresponding real and imaginary parts are separately subtracted.
$\mathrm{Z}_{1}=\mathrm{a}+\mathrm{bi}, \quad \mathrm{Z}_{2}=\mathrm{c}+\mathrm{di}$
$\mathrm{Z}_{1}-\mathrm{Z}_{2}=(\mathrm{a}-\mathrm{c})+\mathrm{i}(\mathrm{b}-\mathrm{d})$
(C) Multiplication of Two Complex Numbers

If $(a+b i)$ and $(c+d i)$ are two complex numbers, their product is defined as the complex number $(\mathrm{ac}-\mathrm{bd})+(\mathrm{ad}+$ bc) i

(D) Division of Two Complex Numbers

Division of complex numbers involves multiplying both numerator and denominator with the conjugate of the denominator

Let $\mathrm{Z}_{1}=\mathrm{a}+\mathrm{bi}, \quad \mathrm{Z}_{2}=\mathrm{c}+\mathrm{di}$
$\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}=\frac{(\mathrm{ac}-\mathrm{bd})+(\mathrm{bc}-\mathrm{ad}) \mathrm{i}}{\mathrm{c}^{2}+\mathrm{d}^{2}}$

- Square root of a Complex Number

(i) $\mathrm{a}+\mathrm{ib}$ has two square roots in each case and two square roots just differ in their sign.
(ii) Square root of a complex number is also a complex number.

Check Your Progress

Q1 The number which can be expressed in the form of $a+b i$ where $i=\sqrt{-1}$
is termed as:
(A) Natural number
(B) Rational number
(C) Real number
(D) Complex number

Q2 What is the value of $1+i^{10}+2$?
(A) 1
(B) 0
(C) 2
(D) 3

Q3 The conjugate of the complex number $5+3 i$ is expressed as:
(A) $3+5 i$
(B) $5-3 i$
(C) $5+3 i$
(D) $3-5 i$

Q4

What should be added with $3+2 i$ in order to get the result $7-i$?
(A) $4-3 i$
(B) $3+4 i$
(C) $2+7 i$
(D) $7-2 i$

Q7 The product of two complex number
$(1+2 i)$ and $(1-3 i)$ is:
(A) $2+6 i$
(B) $1+6 i$
(C) $7-i$
(D) $1-6 i$

Q8 The modulus of the complex number $\frac{3+4 i}{2+i}$ is equal to:
(A) $2 \sqrt{5}$
(B) $\sqrt{5}$
(C) $\frac{1}{\sqrt{5}}$
(D) $5 \sqrt{2}$

Q9 The multiplicative inverse of the complex number $3+4 i$ is equal to:
(A) $\frac{3}{25}+\frac{4}{25} i$
(B) $\frac{4}{9}+\frac{1}{12} i$
(C) $\frac{4}{9}-\frac{1}{12} i$
(D) $\frac{3}{25}-\frac{4}{25} i$

Q10 If $z_{1}=(2+i), z_{2}=(1-i)$, and $z_{3}=(2+3 i)$, then the value of $z_{1}+\left(z_{2}+z_{3}\right)$ is equal to:
(A) $3+5 i$
(B) $5+3 i$
(C) $6+5 i$
(D) $5+6 i$

Q11 What will be the additive inverse of $-10-5 i$?
(A) $10+5 i$
(B) $-10+5 i$
(C) $5+10 i$
(D) $-5+10 i$

Q12 When $3+i$ is divided by $4-2 i$ the resulting complex number is:
(A) $5+7 i$
(B) $3-2 i$
(C) $2+3 i$
(D) $\frac{1}{2}+\frac{1}{2} i$

Q13 The modulus of the complex number $(1+i)(4-3 i)$ is equal to:
(A) $2 \sqrt{5}$
(B) $3 \sqrt{7}$
(C) $5 \sqrt{2}$
(D) $7 \sqrt{3}$

Q14 What is the modulus of the complex number $z=a+b i$ in the polar form?
(A) $r=a+b$
(B) $r=\sqrt{a^{2}+b^{2}}$
(C) $r=\frac{a b}{a+b}$
(D) $r=\frac{a+b}{\sqrt{a^{2}+b^{2}}}$

Q15 What will be the value of x and y if $2 x+3 y i=4-9 i$?
(A) $x=4, y=-9$
(B) $x=2, y=9 i$
(C) $x=2$ and $y=-3$
(D) $x=2$ and $y=3 i$

Answer to check your Progress

1 D	2 C	3 B	4 A	5 B
6 A	7 C	8 B	9 D	10 B

$11 \mathrm{~A} \quad 12 \mathrm{D} \quad 13 \mathrm{C} \quad 14 \mathrm{~B} \quad 15 \mathrm{C}$

Stretch Yourself

1. Find the conjugate of $\frac{3+2 i}{5-3 i}$
2. If $z_{1}=2+i, z_{2}=3-2 i$, then find value of $\left|\frac{2 z_{2}+z_{1}-5-i}{2 z_{1}-z_{2}+3-i}\right|^{2}$
3. Find $\frac{1+\mathrm{c}+\mathrm{is}}{1+\mathrm{c}-\mathrm{is}}$, If $\mathrm{c}^{2}+\mathrm{s}^{2}=1$
4. If $(\sqrt{3}+i)^{100}=2^{99}(a+i b)$, then find $\mathrm{a}^{2}+\mathrm{b}^{2}$
5. Find the polar form of $\frac{1+7 \mathrm{i}}{(2-\mathrm{i})^{2}}$
