Quadratic Equation & Linear Inequalities

• Quadratic Equation

The equation in the form of $ax^2 + bx + c = 0$, $a \ne 0$ For example $5x^2 + 9x + 7 = 0$ is quadratic equation.

• Roots of a Quadratic Equation

- ➤ The value of the variables for which equation is satisfied is known as roots of the quadratic equation.
- > In a quadratic equation, it has two roots.

• Solving Quadratic equation

(i) Factorization Method

By splitting the middle term and taking the common factors.

If $(x - \alpha)$ and $(x - \beta)$ be the two factors of a quadratic equal $ax^2 + bx + c = 0$, then $x = \alpha, \beta$ be the two roots

(ii) Quadratic Formula

In $ax^2 + bx + c = 0$, $a \neq 0$ the roots are

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

 $D = b^2 - 4ac$ is called as Discriminant

- (i) If D > 0, then equation have two real and distinct roots.
- (ii) If D = 0, then equation have two real and equal roots.
- (iii) If D < 0, then equation have no real roots. It will have imaginary complex roots.

• Relation Between Roots and Coefficient of Quadratic Equation

If \bowtie , β are roots of the quadratic equation, then

(i)
$$\alpha + \beta = \frac{-b}{a}$$

(ii)
$$\alpha \beta = \frac{c}{a}$$

• Inequalities

A statement involving a sign of inequality as: >, <, \ge , \le is called as inequalities

For example: 2x + 3 > 5

$$3x + a \le 7$$

• Solving of Inequalities (Rules)

- (1) Equal numbers may be added or subtracted from both side of inequalities.
 - (i) If a > b, then a + x > b + xand a - x > b - x
 - (ii) If $a \le b$, then $a + x \le b + x$ and $a - x \le b - x$
- (2) Both side of an inequalities, can be multiplied and divided by same positive number.
 - (i) If a > b, then ax > bx, and $\frac{a}{x} > \frac{b}{x}$
 - (ii) If $a \le b$, then $ax \le bx$, and $\frac{a}{x} > bx$
- (3) When both sides of inequalities are multiplied by same negative number, then sign or inequality gets reversed.
 - (i) If a > b, and x < 0, then ax < bx, $\frac{a}{x} < \frac{b}{x}$
 - (ii) $a \le b$, and $x \le 0$, and $ax \ge bx$, $\frac{a}{x} \ge \frac{b}{x}$

Check Your Progress

- 1. If $X^2+bx+c=0$ and $x^2+cx+b=0$ have exactly one common root then what is the value of (c+b)?
 - A. 0
 - B. 1
 - C. -1
 - D. None of the above
- 2. If α and β are the roots of $4x^2$ -6x 12=0, then what is the equation

whose roots are $\alpha^2 + 2$ and $\beta^2 + 2$?

A.
$$8x^2 + 98x + 236 = 0$$

B.
$$8x^2 - 98x + 236 = 0$$

C.
$$8x^2 - 98x - 236 = 0$$

D.
$$x^2 - 98x + 236 = 0$$

- 3. What will be the product of x*z if the equation $y^2+xy+z=0$ and $y^2+4y+3=0$ have one common root?
 - A. 12
 - B. -12
 - C. 7
 - D. -7
- 4. If α and β are the roots of the quadratic equation $5x^2 15x + 20 = 0$. Value of $\alpha^2 + \beta^2$
 - A. 1
 - B. -1
 - C. 0
 - D. 2
- 5. Solution of $x^2 + 10 i x 21 = 0$ are
 - A. -3 i, 7i
 - B. -3i,-7i
 - C. 3i,7i
 - D. 3 i, -7 i
- 6. By solving the inequality $\frac{1}{2}(4x+3) > \frac{1}{3}(x+4)$, the answer will be
 - A. x > -1/10
 - B. x > 1/10
 - C. x > 1/5
 - D. x > -1/5
- 7. By solving the inequality 10 a 4 > 8, the value of a is
 - A. Greater than 2
 - B. Less than 2
 - C. Equal to 2
 - D. Less than 1
- 8. The imaginary roots of the equation $(x^2 + 2)^2 + 8x^2 = 6x (x^2 + 2)$ are -

Senior Secondary Course Learner's Guide, Mathematics (311)

- (A) $1 \pm i$
- (B) $2 \pm$
- $(C) 1 \pm i$
- (D) None of these
- 9. Both roots of the equation (x b) (x c) + (x c) (x a) + (x a) (x b) = 0 are -
 - (A) positive (B) negative
 - (C) real (D) imaginary
- 10. If p and q are roots of the equation $x^2 2x + A = 0$ and r and s be roots of the equation $x^2 18x + B = 0$ if p < q < r < s be in A.P., then A and B are respectively-
 - (A) 3,77 (B) 3,77
 - (C) 3,–77 (D) None of these
- 11. Both roots of the equation (x b) (x c) + (x c) (x a) + (x a) (x b) = 0 are -
 - (A) positive
 - (B) negative
 - (C) real
 - (D) imaginary
- 12. If x is real then the value of the expression $\frac{x^2+14x+9}{x^2+2x+3}$ lies between
 - (A) –3 and 3
 - (B) -4 and 5
 - (C) -4 and 4
 - (D) –5 and 4
- 13. If the roots of the equations $x^2 + 3x + 2 = 0$ and $x^2 x + p = 0$ are in the same ratio then the value of p is given by-
 - (A) 2/7
- (B) 2/9

- (C) 9/2
- (D) 7/2
- 14. The sum of all real roots of the equation

$$|x-2|^2 + |x-2| - 2 = 0$$
, is-
(A) 0 (B) 8
(C) 4 (D)

None of these

- 15. If roots of the equation $x^2 + ax + 25$ = 0 are in the ratio of 2 : 3 then the value of a is -
 - (A) $\frac{\pm 5}{\sqrt{6}}$
- (B) $\frac{\pm 25}{\sqrt{6}}$
- (C) $\frac{\pm 5}{6}$
- (D) None of these

Answer to check your progress

1 B 2 B 3 A 4 A 5 B 6A 7 B 8A 9C 10 A 11C 12D 13 B 14C 15 B

Stretch Yourself

- 1. Find value of k if $x^2 + k(2x + 3) + 4(x + 2) + 3k 5$ is a perfect square
- 2. Find the solution of the equation $2x^2 + 3x 9 = 0$
- 3. If x + 1 is a factor of the expression
- 4. $x^4 + (p-3)x^3 (3p-5)x^2 + (2p-9)x + 6$ then find the value of p

Senior Secondary Course Learner's Guide, Mathematics (311)

- 5. If $x^2 + 2xy + 2x + my 3$ have two rational factors then find m.
- 6. Find the nature of roots of the equation
- 7. $x \frac{2}{x-1} = 1 \frac{2}{x-1}$