Quadratic Equation \& Linear Inequalities

- Quadratic Equation

The equation in the form of $a x^{2}+b x+$ $c=0, a \neq 0$
For example $5 x^{2}+9 x+7=0$ is quadratic equation.

- Roots of a Quadratic Equation
> The value of the variables for which equation is satisfied is known as roots of the quadratic equation.
$>$ In a quadratic equation, it has two roots.

- Solving Quadratic equation

(i) Factorization Method

By splitting the middle term and taking the common factors.

If $(x-\alpha)$ and $(x-\beta)$ be the two factors of a quadratic equal $a x^{2}+$ $b x+c=0$, then $x=\alpha, \beta$ be the two roots
(ii) Quadratic Formula

In $a^{2}+b x+c=0, \quad a \neq 0$ the roots are

$$
\alpha=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\beta=\frac{-\mathrm{b}-\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

$D=b^{2}-4 a c$ is called as Discriminant
(i) If $\mathrm{D}>0$, then equation have two real and distinct roots.
(ii) If $\mathrm{D}=0$, then equation have two real and equal roots.
(iii) If $\mathrm{D}<0$, then equation have no real roots. It will have imaginary complex roots.

- Relation Between Roots and Coefficient of Quadratic Equation

If \propto, β are roots of the quadratic equation, then
(i) $\quad \alpha+\beta=\frac{-b}{a}$
(ii) $\alpha \beta=\frac{\mathrm{c}}{\mathrm{a}}$

- Inequalities

A statement involving a sign of inequality as: $>,<, \geq, \leq$ is called as inequalities

For example: $2 \mathrm{x}+3>5$

$$
3 x+a \leq 7
$$

- Solving of Inequalities (Rules)
(1) Equal numbers may be added or subtracted from both side of inequalities.
(i) If $\mathrm{a}>b$, then $\mathrm{a}+\mathrm{x}>b+x$ and $a-x>b-x$
(ii) If $\mathrm{a} \leq \mathrm{b}$, then $\mathrm{a}+\mathrm{x} \leq \mathrm{b}+\mathrm{x}$ and $a-x \leq b-x$
(2) Both side of an inequalities, can be multiplied and divided by same positive number.
(i) If a $>b$, then $a x>b x$, and $\frac{a}{x}>\frac{b}{x}$
(ii) If $\mathrm{a} \leq \mathrm{b}$, then $\mathrm{ax} \leq \mathrm{bx}$, and $\frac{a}{x}>b x$
(3) When both sides of inequalities are multiplied by same negative number, then sign or inequality gets reversed.
(i) If a $>b$, and $\mathrm{x}<0$, then $\mathrm{ax}<b x, \quad \frac{\mathrm{a}}{\mathrm{x}}<\frac{\mathrm{b}}{\mathrm{x}}$
(ii) $\mathrm{a} \leq \mathrm{b}$, and $\mathrm{x} \leq 0$, and $\mathrm{ax} \geq \mathrm{bx}, \quad \frac{\mathrm{a}}{\mathrm{x}} \geq \frac{\mathrm{b}}{\mathrm{x}}$

Check Your Progress

1. If $X^{2}+b x+c=0$ and $x^{2}+c x+b=0$ have exactly one common root then what is the value of $(\mathrm{c}+\mathrm{b})$?
A. 0
B. 1
C. -1
D. None of the above
2. If α and β are the roots of $4 x^{2}-6 x-$ $12=0$, then what is the equation
whose roots are $\alpha^{2}+2$ and $\beta^{2}+$ 2 ?
A. $8 x^{2}+98 x+236=0$
B. $8 x^{2}-98 x+236=0$
C. $8 x^{2}-98 x-236=0$
D. $x^{2}-98 x+236=0$
3. What will be the product of $x * z$ if the equation $y^{2}+x y+z=0$ and y^{2} $+4 y+3=0$ have one common root?
A. 12
B. -12
C. 7
D. -7
4. If α and β are the roots of the quadratic equation $5 x^{2}-15 x+$ $20=0$. Value of $\alpha^{2}+\beta^{2}$
A. 1
B. -1
C. 0
D. 2
5. Solution of $x^{2}+10$ i $x-21=0$ are
A. $-3 \mathrm{i}, 7 \mathrm{i}$
B. $-3 \mathrm{i},-7 \mathrm{i}$
C. $3 \mathrm{i}, 7 \mathrm{i}$
D. $3 \mathrm{i},-7 \mathrm{i}$
6. By solving the inequality $1 / 2(4 x+3)>$ $1 / 3(x+4)$, the answer will be
A. $x>-1 / 10$
B. $x>1 / 10$
C. $x>1 / 5$
D. $x>-1 / 5$
7. By solving the inequality $10 \mathrm{a}-4>$ 8 ,the value of a is
A. Greater than 2
B. Less than 2
C. Equal to 2
D. Less than 1
8. The imaginary roots of the equation $\left(x^{2}+2\right)^{2}+8 x^{2}=6 x\left(x^{2}+2\right)$ are -
(A) $1 \pm \mathrm{i}$
(B) $2 \pm$
(C) $-1 \pm \mathrm{i}$
(D) None of these
9. Both roots of the equation $(x-b)(x-$ c) $+(x-c)(x-a)+(x-a)(x-b)=$ 0 are -
(A) positive
negative
(C) real
(D) imaginary
10. If p and q are roots of the equation $x^{2}-2 x+A=0$ and r and s be roots of the equation $x^{2}-18 x+B=0$ if p $<\mathrm{q}<\mathrm{r}<\mathrm{s}$ be in A.P., then A and B are respectively-
(A) $-3,77$
(B) 3, 77
(C) $3,-77$
(D) None of these
11. Both roots of the equation $(x-b)(x-$ c) $+(x-c)(x-a)+(x-a)(x-b)=$ 0 are -
(A) positive
(B) negative
(C) real
(D) imaginary
12. If x is real then the value of the expression $\frac{x^{2}+14 x+9}{x^{2}+2 x+3}$ lies between
(A) -3 and 3
(B) -4 and 5
(C) -4 and 4
(D) -5 and 4
13. If the roots of the equations $x^{2}+3 x$ $+2=0$ and $x^{2}-x+p=0$ are in the same ratio then the value of p is given by-
(A) $2 / 7$
(B) $2 / 9$
(C) $9 / 2$
(D) $7 / 2$
14. The sum of all real roots of the equation
$|\mathrm{x}-2|^{2}+|\mathrm{x}-2|-2=0$, is-
(A) 0
(B) 8
(C) 4
(D)

None of these
15. If roots of the equation $x^{2}+a x+25$ $=0$ are in the ratio of $2: 3$ then the value of a is -
(A) $\frac{ \pm 5}{\sqrt{6}}$
(B) $\frac{ \pm 25}{\sqrt{6}}$
(C) $\frac{ \pm 5}{6}$
(D) None of these

Answer to check your progress

1B2B3A4A5B6A7B8A9C10A
11C 12D 13 B 14C 15 B

Stretch Yourself

1. Find value of k if $x^{2}+k(2 x+3)+4(x+2)$ $+3 \mathrm{k}-5$ is a perfect square
2. Find the solution of the equation $2 x^{2}+3 x-$ $9=0$
3. If $x+1$ is a factor of the expression
4. $x^{4}+(p-3) x^{3}-(3 p-5) x^{2}+(2 p-$ 9) $x+6$ then find the value of p
5. If $x^{2}+2 x y+2 x+m y-3$ have two rational factors then find m.
6. Find the nature of roots of the equation
7. $\mathrm{x}-\frac{2}{\mathrm{x}-1}=1-\frac{2}{\mathrm{x}-1}$
