NIOS/Acad./2021/311/12/E

National Institute of Open Schooling (NIOS) Senior Secondary Course Lesson – 12: Binomial Theorem Worksheet -12

- 1. Using Binomial Theorem, evaluate the value of $(103)^5$ and verify it.
- 2. Expand $(1+x+x^4)^4$ in power of x.
- 3. Simplify and hence $(x+y)^6 + (x-y)^6$ evaluate $(\sqrt{3}+1)^6 + (\sqrt{3}-1)^6$.
- 4. If A be the sum of odd terms and B be the sum of even terms in the expansion of $(x+a)^n$, prove that
- (A) $A^2 B^2 = (x^2 a^2)^n$ (B) $4AB = (x+a)^{2n} - (x-a)^{2n}$
- 5. Using binomial theorem, prove that $6^n 5n$ always leaves the remainder 1, when divided by 25, for all $n \in N$.
- 6. Find the co-efficient of x^5 in the expansion of $(1+x)^{21} + (1+x)^{22} + \dots + (1+x)^{30}$
- 7. If a, b are distinct integers, prove that $a^n b^n$ is divisible by (a-b), for all $n \in N$.
- 8. If the co-efficient of three consecutive terms in the expansion of $(1+x)^n$ as 76, 95 and 76, then find the value of *n*.

9. Show that the expansion of $\left(x^2 + \frac{1}{x}\right)^{12}$ does not contain any term involving x^{-1}

10. If *a*, *b*, *c* and *c* in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then justify $\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}$.