National Institute of Open Schooling Senior Secondary Course : Mathematics
 Lesson 22 : Inverse of a Matrix and its Applications
 Worksheet - 22

1. Differentiate between singular and non-singular matrix with examples.
2. Write any two 3×3 singular matrices and 2×2 non-singular matrices by taking one digit number as elements of the matrices.
3. Find adjoint and determinant value of the of the matrix $\left[\begin{array}{ll}2 & -4 \\ 7 & -3\end{array}\right]$
4. Write any two matrices (A and B) of order 2×2 and verify for the following cases
i. \quad A $($ Adjoint A$)=($ Adjoint A$) \mathrm{A}$
ii. $\quad B($ Adjoint $B)=(A d j o i n t B) B$
5. Using elementary transformations, find the inverse of the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]
$$

6. If $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$, then show that: $\mathrm{A}^{2}-7 \mathrm{~A}-2 \mathrm{I}=0$.
7. Write any two matrices $(\mathrm{X}$ and Y) of order 2 x 2 such that $\mathrm{XY}=\mathrm{YX}=\mathrm{I}$
8. If $\mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right] \quad$ and $\mathrm{B}=\left[\begin{array}{ll}2 & 7 \\ 1 & 4\end{array}\right]$

Find $(A B)^{-1}$ and $B^{-1} \mathrm{~A}^{-1}$
9. Verify the possibility of inverse of the matrix and also verify $A^{-1} A=A A^{-1}=I$, If $A=$

$$
\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

10. Solve the system of simultaneous equations using matrix inversion method as:

$$
\begin{gathered}
2 x+3 y+z=6 \\
x+y+2 z=5 \\
3 x+2 y-z=12
\end{gathered}
$$

