NIOS/Acad./2021/311/29/E

National Institute of Open Schooling (NIOS)
 Senior Secondary Course Lesson - 29: Applications of Derivatives Worksheet -29

1. Find the rate of change of the total surface area of a cylinder of radius (r) and height (h), when the radius varies
2. The radius of a circle is increasing uniformly at the rate of $5 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area of the circle is increasing when the radius is 10 cm .
3. Discuss the applicable of Rolle's theorem on the function

$$
f(x)=\left\{\begin{array}{l}
x^{2}+1, \text { when } 0 \leq x \leq 1 \\
3-x, \text { when } 1 \leq x \leq 2
\end{array}\right.
$$

4. Find the point on the curve $y=\frac{x}{1+x^{2}}$, where the tangent to the curve has the greatest slope.
5. If x is a real, find the minimum value of $x^{2}-8 x+17$
6. Find the local maxima and local minimum of the function $f(x)=\sin x-\cos x, 0<x<2 \pi$. Also find the local maxima and local minimum value.
7. PQ is the diameter of a circle and R is any point on the circle. Show that the area of triangle PQR is maximum, when it is on isosceles triangle.
8. Show that the local maximum value of $x+\frac{1}{x}$ is less than local minimum value.
9. Find the slope of tangent to the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$
10. Find the equation of tangent to the curve $y=x^{2}-2 x+7$, which is perpendicular to the line $5 y-15 x=13$
