National Institute of Open Schooling
 Senior Secondary Course
 Lesson 35 : Plane
 Worksheet- 35

1. Take $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ be the coordinate of point P on the plane and l, m, and n be the direction cosines. Find the equation of a plane in vector form and normal form.
2. Find the vector equation of a plane passing through the point $(4,-6,5)$ and perpendicular to the line with direction ratios $3,2,-1$.
3. If the plane passing through three points $\mathrm{X}(3,5,-2), \mathrm{Y}(4,-3,5)$, and $(-4,3,5)$, then find the vector equation of the plane.
4. The equation of a plane is $2 x+4 y-5 z-40=0$. Reduced the equation of a plane to the intercept form and find its intercepts on the co-ordinate axes.
5. If the points $A(1,1, a)$ and $B(-3,0,1)$ are equidistant from the plane $3 x+4 y-12 z+13=0$, Find the value of a.
6. Find the equation of the plane passing through the points $(2,-1,5)$, and perpendicular to the planes $\mathrm{x}+2 \mathrm{y}-\mathrm{z}=1$ and $3 \mathrm{x}-4 \mathrm{y}+\mathrm{z}=5$.
7. Find the equation of the plane parallel to the plane $2 x+3 y-6 z-5=0$ and passing through the point $(2,1,-3)$.
8. Find the equation of the plane passing through the origin and perpendicular to the planes $2 x+2 y+2 z=0$ and $2 x+3 y-2 z=0$
9. Find the equation of the plane passing through the points $\mathrm{A}(1,-2,3), \mathrm{B}(3,-1,2)$ and parallel to the lines $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$
10. Find the distance between the planes $2 x+3 y-2 z-15=0$ and $4 x+6 y-4 z-30=0$
