National Institute of Open Schooling Senior Secondary Course: Mathematics
 Lesson 5: Relation between Sides and Angles of a Triangle Worksheet-5

1. If any triangle ABC , prove that
$a(\sin B-\sin c)+b(\sin C-\sin A)+c(\sin A-\sin B)=0$
2. If triangle ABC , the three angles are A, B and C and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the length of the sides opposite to them respectively. If the triangle ABC is an acute angle triangle, then prove that
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 a b}$
3. Three sides of any triangle ABC are $\mathrm{a}=18 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm} \mathrm{c}=30 \mathrm{~cm}$, find the value of $\sin A$
$\cos B$
$\sin C$
4. In any triangle ABC , show that
$=\frac{\sin (B-C)}{\sin (B+C)}=\frac{b^{2}-c^{2}}{a^{2}}$, if
a, b and c are the sides of cornesponding angles A, B and C respectively
5. Two trees A and B are on the same side of a river. From a point C in the river the distance of trees A and B are 200 meter and 220 Meter respectively if the angle C is 45°, then find the distance between the trees. use $\sqrt{2}=1.44$
6. In a triangle ABC , if $a \cos A=b \cos B$ then prove that the triangle ABC is either isosceles or right angled.
7. For any triangle ABC , prove that $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos c}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$

8 In triangle XYZ , if $x \cos X=b \cos Y$, where $x \neq y$, prove that triangle XYZ is a right angle triangle.

9 If three sides of a triangle ABC are $\mathrm{a}=3 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}, \mathrm{c}=7 \mathrm{~cm}$, then find $\sin \mathrm{A}, \operatorname{Cos} \mathrm{B}$ and $\sin \mathrm{C}$

10 In an equilateral triangle ABC , if a, b, and c are three sides of the triangle, then prove that
$\frac{b}{c+a}+\frac{c}{a+b}=1$

