18
 CONSTRUCTIONS

- When $\mathbf{3}$ sides of a triangle are given : Steps:

1. Draw $A B=6 \mathrm{~cm}$.
2. With A as centre and radius 4.8 cm draw an arc.
3. With B as centre and radius 5 cm draw another arc intersecting the previous arc at C.
4. Joint A to C and B to $\mathrm{C} . \triangle \mathrm{ABC}$ is the required triangle.

- When 2 sides and included angle are given :

Steps:

1. Draw $\mathrm{PQ}=5.6 \mathrm{~cm}$.
2. At Q construct an angle $\angle \mathrm{PQX}=60^{\circ}$.
3. With Q as centre and radius 4.5 cm draw an arc cutting $Q X$ at R.
4. Join P to $\mathrm{R}, \triangle \mathrm{PQR}$ is the required triangle.

- When two angles and included side of Δ are given:

Steps:

1. Draw $\mathrm{BC}=4.7 \mathrm{~cm}$.
2. At B construct $\angle \mathrm{CBQ}=60^{\circ}$.
3. At C construct $\angle \mathrm{BCR}=45^{\circ}$ meeting BQ at $\mathrm{A} . \triangle \mathrm{ABC}$ is the required triangle.

- When perimeter and two base angles of a triangle are given :
Steps:

1. Draw $X Y=9.5 \mathrm{~cm}$
2. At X construct $\angle \mathrm{YXP}=30^{\circ}$ (Which is $\left.\frac{1}{2} \times 60^{0}\right)$.
3. At Y construct $\angle \mathrm{XYQ}=22 \frac{1}{2}^{0}$ (which is $\frac{1}{2} \times 45^{0}$)
4. Draw right bisector of XA cutting XY at B.
5. Draw right bisector of YA cutting $X Y$ at C.
6. Join A to B and A to C.
$\triangle \mathrm{ABC}$ is the required triangle.

- Construct a $\triangle \mathrm{ABC}$ when $\mathrm{AB}+\mathrm{AC}=8.2$ $\mathrm{cm}, \mathrm{BC}=3.6 \mathrm{~cm}, \angle B=45^{\circ}$
Steps:
(1) Draw $\mathrm{BC}=3.6 \mathrm{~cm}$
(2) At B construct $\angle \mathrm{CBK}=45^{\circ}$.
(3) From BK cutoff $\mathrm{BP}=8.2 \mathrm{~cm}$.
(4) Join C to P and draw right bisector of CP intersecting BP at A .
(5) Join A to C, $\triangle A B C$ is the required triangle.

- Construct a $\triangle \mathrm{ABC}$, when $\mathrm{BC}=4 \mathrm{~cm}$, $\angle B=60^{0}, \mathrm{AB}-\mathrm{AC}=\mathbf{1 . 2} \mathrm{cm}$
Steps:

1. Draw $\mathrm{BC}=4 \mathrm{~cm}$.
2. Construct $\angle \mathrm{CBP}=60^{\circ}$.
3. From BP cutoff $\mathrm{BK}=1.2 \mathrm{~cm}$.
4. Join C to K and draw right bisector of CK intersecting BP produced at A.
5. Join A to $\mathrm{C}, \triangle \mathrm{ABC}$ is the required traingle.

- Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=\mathbf{6 c m}$, $\mathrm{BC}=4 \mathrm{~cm}$ and median $\mathrm{CD}=3.5 \mathrm{~cm}$.

Steps :

1. Draw $A B=6 \mathrm{~cm}$.
2. Draw right bisector of $A B$ meeting $A B$ in D.
3. With D as centre and radius 3.5 cm draw an arc.
4. With B as centre and radius 4 cm draw another arc intersecting the previous arc in C.
5. Join A to C and B to C, $\triangle \mathrm{ABC}$ as the required triangle.

- To draw a tangent to a given circle at a given point on it using its centre :
Steps:

1. Draw a circle with centre O and a point P on it.
2. Joint O to P
3. At P draw $\mathrm{PT} \perp \mathrm{OP}$.
4. Produce TP to Q , then TPQ is the required tangent.

- To draw tangents to a given circle from a given point outside it

Steps:

1. Draw a circle with centre O and a point P outside it.
2. Join O to A .
3. Draw the right bisector of OA. Let R be the mid point of OA.
4. With R as centre and radius as RO. Draw a circle intersecting the given circle at P and Q .
5. Join A to P and A to Q, then $A P$ and $A Q$ are required tangents.

- To construct a triangle similar to a given

 triangle with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle.
Steps:

1. Let ABC be the given Δ. Draw any ray BX making an acute angle with BC on the side opposite to the vertex A .
2. Locate 5 points $\mathrm{B}_{1,} \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$ and B_{5} on BX so that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=$ $\mathrm{B}_{4} \mathrm{~B}_{5}$.
3. Join B_{5} to C and draw a line through B_{3} parallel to $\mathrm{B}_{5} \mathrm{C}$ to meet BC at C^{\prime}.
4. Draw a line through C parallel to CA to meet $A B$ in A^{\prime}. The $\Delta A^{\prime} B C^{\prime}$ is the required triagle.

CHECK YOUR PROGRESS:

1. Using a ruler and compass it is possible to construct an angle of:
(A) 37.5°
(B) 25^{0}
(C) 40°
(D) 70°.
2. The constuction of a $\triangle P Q R$ in which $P Q=5 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$ is not possible, when difference of $Q R$ and $P R$ is equal to:
(A) 5.2 cm
(B) 4.8 cm
(C) 3.7 cm
(D) 4.5 cm
3. The construction of $\triangle P Q R$ is not possible, in which $P Q=5.5 \mathrm{~cm} \angle Q=45^{\circ}$, and $P Q+R P$ is:
(A) 5 cm
(B) 6 cm
(C) 7 cm
(D) 8 cm
4. The construction of a $\triangle \mathrm{ABC}$ given that $\mathrm{BC}=3 \mathrm{~cm}, \angle \mathrm{C}=60^{\circ}$ is possible when difference of AB and $A C$ is equal to:
(A) 4 cm
(B) 3.5 cm
(C) 3.1 cm
(D) 2.4 cm
5. Draw a line segment $B A=8 \mathrm{~cm}$, find point C on it such that $A C=\frac{3}{4} A B$.
6. Construct a triangle PQR , given that $\mathrm{PQ}=3.4 \mathrm{~cm}, \mathrm{QR}=5.2 \mathrm{~cm}$ and $\mathrm{PR}=7.5 \mathrm{~cm}$.
7. Construct a triangle $A B C$, given that $A C=5.5 \mathrm{~cm}, A B=3.2 \mathrm{~cm}$ and $\angle A=135^{\circ}$.
8. Construct a triangle PQR given that $\mathrm{QR}=3.2 \mathrm{~cm}, \angle \mathrm{Q}=85^{\circ}$ and $\angle \mathrm{R}=60^{\circ}$.
9. Construct a triangle ABC in which $\angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=45^{\circ}$ and $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=11 \mathrm{~cm}$.

STRETCHYOURSELE

1. Construct a triangle PQR in which $\mathrm{QR}=$ $8 \mathrm{~cm}, \angle \mathrm{Q}=45^{\circ}$ and $\mathrm{PQ}-\mathrm{PR}=3.5 \mathrm{~cm}$.
2. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=5 \mathrm{~cm}$, $\angle \mathrm{B}=60^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=7.5 \mathrm{~cm}$.
3. Construct a triangle ABC in which $\mathrm{AB}=$ $5 \mathrm{~cm}, \mathrm{BC}=4.2 \mathrm{~cm}$ and median $\mathrm{CD}=$ 3.8 cm .
4. Draw triangle PQR having base $\mathrm{QR}=6 \mathrm{~cm}$, $\angle \mathrm{PQR}=60^{\circ}$ and side $\mathrm{PQ}=4.5 \mathrm{~cm}$.

Construct a triangle $\mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ simialr to $\triangle \mathrm{PQR}$ with scale factor $\frac{4}{5}$.

ANSWERS

CHECK YOUR PROGRESS :

1. A
2. A
3. A
4. D
