CO-ORDINATE GEOMETRY

- Any point $(x, 0)$ lies on x-axis.
- Any point $(0, y)$ lies on y-axis.
- (x, y) and (y, x) do not represent the same point when $x \neq y$.
- Co- ordinates of origin are $(0,0)$.

- Distance between two points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $B\left(x_{2}, y_{2}\right), A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

- Three points A, B and C are collinear, if
$\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$
- A quadrilateral will be a :

Parallelogram: If length of oposite sides are equal.
Rectangle: If opposite sides are equal and diagonals are equal.

Square: If all 4 sides are equal, diagonals are also equal.

Rhombus: If all 4 sides are equal
Parallelogram but Not rectangle: Opposite sides are equal but diagonals are not equal

Rhombus but not square: All sides are equal but diagonals are not equal.

- Section formula:

$(x, y)=\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
Mid-point $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
- Centroid:

$G(x, y)=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

CHECK YOUR PROGRESS:

1. A triangle has vertices $(0,8),(0,0)$ and $(6,0)$. Its perimeter is :
(A) 10
(B) 24
(C) 12
(D) 14
2. The point which divides the line segment joining the points $(-8,-5)$ and $(-2,-10)$ in the ratio 2:1 internally lies in the :
(A) Ist quadrant
(B) IInd quadrant
(C) IIIrd quadrant
(D) IVth quadrant
3. If $\left(\frac{a-2}{2}, 5\right)$ is the mid point of the line segment joining the points $(1,7)$ and $(-5,3)$, the value of a is :
(A) 2
(B) 0
(C) -4
(D) -3
4. The distance between $(6, x)$ and $(0,4)$ is 10 . The value of x is :
(A) 4 or 12
(B) 4 or -12
(C) -4 or 12
(D) -4 or -12
5. A point on x-axis which is equidistant from $\mathrm{A}(5,4)$ and $\mathrm{B}(-2,3)$ is :
(A) $(-1,0)$
(B) $(1,0)$
(C) $(2,0)$
(D) $(-2,0)$
6. Plot the points $(-3,-2),(-1,-2),(-2,0),(-3,-1)$ and join them in the order. What figure you get?
7. The length of a line segement is 10 units. If one end is at $(2,-3)$ and abscissa of the other is 10 , show that its ordinate is either 3 or -9 .
8. If A and B are $(1,4)$ and $(5,2)$ respectively, find co-ordinates of the point P on AB so that $4 \mathrm{AP}=3 \mathrm{~PB}$.
9. Show that the points $\mathrm{A}(3,3), \mathrm{B}(-1,0)$ and $\mathrm{C}(1,4)$ form a right triangle whose hypotenuse is AB.
10. Show that the points $P(0,-4), Q(6,2), R(3,5)$ and $S(-3,-1)$ are the vertices of the rectangle PQRS.

STRETCHYOURSELF

1. AB is a line segment with co-ordinates as $A(9,2)$ and $B(-5,12)$. In what ratio point $(3,2)$ divides the line segment AB .
2. Find the co-ordinates of the points which divide the line segment joining the points $(-4,0)$ and $(0,6)$ in four equal parts.
3. Points $\mathrm{A}(-5,0), \mathrm{B}(0,15)$ and $\mathrm{C}(-10,20)$ are vertices of a triangle ABC . Point Plies on side AB and divides it in the ratio $2: 3$. Similarly point Q lies on the side AC and divides it in the ratio 2:3
(i) Find the co-ordinates of the points P and Q .
(ii) Show that $\mathrm{PQ}=\frac{2}{5} \mathrm{BC}$.

ANSWERS

CHECK YOUR PROGRESS :

1. B
2. B
3. C
4. C
5. C
6. Pentagon
7. $\left(\frac{19}{7}, \frac{22}{7}\right)$

STRETCH YOURSELF:

1. $3: 4$
2. $\left(-3, \frac{3}{2}\right),(-2,3),\left(-1, \frac{9}{2}\right)$
3. $\left(-5, \frac{45}{2}\right),(-20,30)$
