22

INTRODUCTION TO TRIGONOMETRY

• **Trigonometry**: Trigonometry is that branch of mathematics which deals with the measurement of the sides and the angles of a triangle and the problems related to angles.

• Trigonometric Ratios : Ratios of the sides of a triangle with respect to its acute angles are called trigonometric ratios. In the right angled ΔAMP For acute angle PAM = θ Base = AM = x, Perpendicular = PM = y, Hypotenuse = AP = r

Here, sine $\theta = \frac{y}{r}$, Written as sin θ

cosine $\theta = \frac{x}{r}$, Written as $\cos \theta$

tangent $\theta = \frac{y}{x}$, Written as tan θ

cosecent $\theta = \frac{r}{y}$, Written as cosec θ

secent $\theta = r_X'$, Written as sec θ

cotangent $\theta = \frac{x}{y}$, Written as $\cot \theta$

 $\Rightarrow \sin \theta$, $\cos \theta$, $\tan \theta$ etc. are complete symbols and can not be separated from θ . \Rightarrow Every trigonometric ratio is a real number.

 $\Rightarrow \theta$ is restricted to be an acute angle.

⇒ For convenience, we write $(\sin \theta)^2$, $(\cos \theta)^2$, $(\tan \theta)^2$ as $\sin^2 \theta$, $\cos^2 \theta$ and $\tan^2 \theta$ respectively.

• Relation between Trigonometric ratios :

$$\Rightarrow \sin \theta = \frac{1}{\cos ec\theta} \text{ or } \csc \theta = \frac{1}{\sin \theta} \text{ or }$$

 $\sin \theta \times \csc \theta = 1$

$$\Rightarrow \cos \theta = \frac{1}{\sec \theta} \text{ or } \sec \theta$$
$$= \frac{1}{\cos \theta} \text{ or } \cos \theta \times \sec \theta = 1$$
$$\Rightarrow \tan \theta = \frac{1}{\cot \theta} \text{ or}$$
$$\cot \theta = \frac{1}{\tan \theta} \text{ or } \tan \theta \times \cot \theta = 1$$
$$\Rightarrow \tan \theta = \frac{\sin \theta}{\cos \theta}, \cot \theta = \frac{\cos \theta}{\sin \theta}$$

- Trigonometric Identities : An equation involving trigonometric ratios of an angle θ is said to be a trigonometric identity if it is satisfied for all values of θ for which the given trigonometric ratios are defined. Some special trigonometric Identities
 - $\Rightarrow \sin^2 \theta + \cos^2 \theta = 1 \text{ or } 1 \cos^2 \theta = \sin^2 \theta \text{ or } 1 \sin^2 \theta = \cos^2 \theta.$

 $\Rightarrow 1 + \tan^2 \theta = \sec^2 \theta \text{ or } \sec^2 \theta - \tan^2 \theta = 1$ or $\sec^2 \theta - 1 = \tan^2 \theta$

 $\Rightarrow 1 + \cot^2 \theta = \csc^2 \theta \text{ or } \csc^2 \theta - \cot^2 \theta$ $= 1 \text{ or } \csc^2 \theta - 1 = \cot^2 \theta.$

• Trigonometric ratios of complementary angles: If θ is an acute angle then

 $\sin (90^\circ - \theta) = \cos \theta$ and $\cos(90^\circ - \theta) = \sin \theta$ $\tan (90^\circ - \theta) = \cot \theta$ and $\cot (90^\circ - \theta) = \tan \theta$ $\csc (90^\circ - \theta) = \sec \theta$ and $\sec(90^\circ - \theta) =$ $\csc \theta$

Here θ is an acute angle and $(90^\circ - \theta)$ is a complementary angle for θ .

- Finding of trigonometric ratios : ⇒ If two sides of any right triangle are given, then all the six trigonometric ratios can be written.
- ⇒ If one trigonometric ratio is given, then other trigonometic ratios can be written by using pythagoras theorem or trigonometic identities.

STRETCH YOURSELF 6. $\frac{720}{2197}$ 5. D 4. C For a right angled Δ ABC, right angled at 1. 8. $\sec \theta = 2$, $\csc \theta = \frac{2}{\sqrt{3}}$, $\tan \theta = \sqrt{3}$ C, $\tan A=1$, find the value of $\sin^2 B \cdot \cos^2 B$. Find the value of 2. tan1[°]. tan2[°].tan3[°].....tan89[°]. **STRETCHYOURSELF:** ANSWERS $\frac{1}{4}$ 1. 2.1 **CHECK YOUR PROGRESS :** 2. C 3. C 1. А