TRIGONOMETRIC RATIOS OF SOME SPECIAL ANGLES

- Trigonometic ratios of angle 45° : In Δ $\mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \angle \mathrm{A}=45^{\circ}$ then $\angle \mathrm{C}=45^{\circ}$ and $\mathrm{AB}=\mathrm{BC}=\mathrm{a}$ then $\mathrm{AC}=\sqrt{2} \mathrm{a}$

In $\triangle \mathrm{ABC}, \sin 45^{\circ}=\frac{1}{\sqrt{2}}, \cos 45^{\circ}=\frac{1}{\sqrt{2}}$, $\tan 45^{\circ}=1, \cot 45^{\circ}=1, \operatorname{cosec} 45^{\circ}=\sqrt{2}$, $\sec 45^{\circ}=\sqrt{2}$

- Trigonometric ratios of 30° and 60° : In an equilateral triangle ABC with side 2 a , $\mathrm{AD}=\sqrt{3} \mathrm{a}$

In $\Delta \mathrm{ADB}$,
$\operatorname{Sin} 30^{\circ}=\frac{1}{2}$,
In $\Delta \mathrm{ADB}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
& \cos 60^{\circ}=\frac{1}{2}
\end{aligned}
$$

$\tan 30^{\circ}=\frac{1}{\sqrt{3}} \quad \tan 60^{\circ}=\sqrt{3}$
$\operatorname{cosec} 30^{\circ}=2 \quad \operatorname{cosec} 60^{\circ}=\frac{2}{\sqrt{3}}$
$\sec 30^{\circ}=\frac{2}{\sqrt{3}} \quad \sec 60^{\circ}=2$
$\cot 30^{\circ}=\sqrt{3} \quad \cot 60^{\circ}=\frac{1}{\sqrt{3}}$

- Ttrigonometric Ratios of $\mathbf{0}^{\mathbf{0}}$ and $\mathbf{9 0}^{\mathbf{0}}$: Let $\angle \mathrm{XAY}=\theta$.

In Δ AMP, we have
$\sin \theta=\frac{\mathrm{PM}}{\mathrm{AP}}, \cos \theta=\frac{\mathrm{AM}}{\mathrm{AP}}, \tan \theta=\frac{\mathrm{PM}}{\mathrm{AM}}$
If θ becomes 0°, then $\mathrm{PM}=0, \mathrm{AM}=\mathrm{AP}$
If θ becomes 90°, then $\mathrm{AM}=0, \mathrm{AP}=\mathrm{PM}$
If $\theta=0^{\circ}$, then If $\theta=90^{\circ}$, then
$\sin 0^{\circ}=0 \quad \sin 90^{\circ}=1$
$\cos 0^{\circ}=1 \quad \cos 90^{\circ}=0$
$\tan 0^{\circ}=0 \quad \tan 90^{\circ}=$ Not defined
$\operatorname{cosec} 0^{\circ}=\frac{1}{0}=\quad \operatorname{cosec} 90^{\circ}=1$
not defined
$\sec 0^{\circ}=\frac{1}{1}=1 \quad \sec 90^{\circ}=$ not defined
$\cot 0^{\circ}=\frac{1}{0}=\quad \cot 90^{\circ}=0$
not defined

Trigonometric Ratios of $0^{0}, 30^{0}, 45^{0}, 60^{\circ}$ and 90°	$~$ ratio		0^{0}	30^{0}	45^{0}	60^{0}
	\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
	\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined	
\cot	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	
cosec	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	
\sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined	

- Applications of trigonometry :

- Line of sight: If an observer is at O and the point P is under consideration then the line OP is called line of sight of the point P.
- Angle of elevation: Angle between the line of sight and the horizontal line OA is known
as angle of elevation of point P as seen from O.
- Angle of depression: If an observer is at P and the object under consideration is at O , then the $\angle \mathrm{BPO}$ is known as angle of depression of O as seen from P .
- Relation between angle of elevation and angle of depression: Angle of elevation of a point P as seen form O is equal to the angle of depression of O as seen from P .

CHECK YOUR PROGRESS:

1. $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}+\frac{1-\tan 45^{\circ}}{1+\tan ^{2} 45^{\circ}}$ is equal to :
(A) $\sin 60^{\circ}$
(B) $\sin 30^{\circ}$
(C) $\cos 60^{\circ}$
(D) $\tan 60^{\circ}$
2. The ratio of the length of a rod to its shadow is $1: \sqrt{3}$. The angle of elevation of sun is:
(A) 30°
(B) 45°
(C) 60°
(D) 90°
3. Evaluate $\tan ^{2} 45^{\circ}-\sin ^{2} 60^{\circ}+2 \cos ^{2} 30^{\circ}$.
4. In $\triangle \mathrm{ABC}$, right angled at $\mathrm{C}, \mathrm{AC}=2 \sqrt{3} \mathrm{~cm}$ and $\mathrm{BC}=2 \mathrm{~cm}$. Find $\angle \mathrm{A}$ and $\angle \mathrm{B}$.
5. If $\sin (A+B)=1$ and $\cos (A-B)=\frac{\sqrt{3}}{2}, 0^{\circ}<A+B \leq 90^{\circ}$ and $A \geq B$ find A and B.

STRETCH YOURSELF

ANSWERS

1. The string of a kite is 100 m long and it

CHECK YOUR PROGRESS :

1. A
2. A
makes an angle of 60 with the horizon-
tal. Assuming that there is no slack in the string, calculate the height of the kite.
3. A 12 m heigh tree is broken by the wind in such a way that its top touches the ground and makes an angle of 30° with the ground. Find the height at which tree is broken.
4. Find the value of A, if $\sin 2 A=2 \sin A$ where $0 \leq \mathrm{A}<90^{\circ}$.
5. $\frac{7}{4}$
6. $\angle \mathrm{A}=30^{\circ}, \angle \mathrm{B}=60^{\circ}$
7. $\angle \mathrm{A}=60^{\circ}, \angle \mathrm{B}=30^{\circ}$

STRETCH YOURSELF :
$1.50 \sqrt{3} \mathrm{~m}$
2. 4 m
3. 0^{0}

