

TRIGONOMETRIC RATIOS OF SOME SPECIAL ANGLES

• Trigonometic ratios of angle 45° : In \triangle ABC, $\angle B = 90^{\circ}$, $\angle A = 45^{\circ}$ then $\angle C = 45^{\circ}$ and AB = BC = a then AC = $\sqrt{2}a$

In \triangle ABC, sin $45^{\circ} = \frac{1}{\sqrt{2}}$, cos $45^{\circ} = \frac{1}{\sqrt{2}}$, tan $45^{\circ} = 1$, cot $45^{\circ} = 1$, cosec $45^{\circ} = \sqrt{2}$, sec $45^{\circ} = \sqrt{2}$

• Trigonometric ratios of 30° and 60° : In an equilateral triangle ABC with side 2a, $AD = \sqrt{3}a$

• **Ttrigonometric Ratios of 0**⁰ and 90⁰: Let $\angle XAY = \theta$.

In Δ AMP, we have

$\sin\theta = \frac{PM}{AP}, \cos\theta =$	$\frac{AM}{AP}$, $\tan \theta = \frac{PM}{AM}$						
If θ becomes 0^0 , then PM = 0, AM = AP							
If θ becomes 90°, then AM = 0, AP = PM							
If $\theta = 0^{\circ}$, then	If $\theta = 90^{\circ}$, then						
$\sin 0^0 = 0$	$\sin 90^{\circ} = 1$						
$\cos 0^0 = 1$	$\cos 90^{\circ} = 0$						
$\tan 0^0 = 0$	$\tan 90^{\circ} = \text{Not defined}$						
$\csc 0^0 = \frac{1}{0} =$	$\csc 90^0 = 1$						
not defined							
$\sec 0^0 = \frac{1}{1} = 1$	$\sec 90^{\circ} = $ not defined						
$\cot 0^0 = \frac{1}{0} =$	$\cot 90^{\circ} = 0$						
not defined							

68 :: Learner Guide

Trigonometric Ratios of 0^0 , 30^0 , 45^0 , 60^0	$\theta \rightarrow$ ratio	00	30°	45°	60 [°]	90 ⁰
and 90°	sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
	tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
	cot	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
	cosec	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
	sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined

• Applications of trigonometry :

- Line of sight: If an observer is at O and the point P is under consideration then the line OP is called line of sight of the point P.
- Angle of elevation: Angle between the line of sight and the horizontal line OA is known

as angle of elevation of point P as seen from O.

- Angle of depression: If an observer is at P and the object under consideration is at O, then the ∠BPO is known as angle of depression of O as seen from P.
- Relation between angle of elevation and angle of depression: Angle of elevation of a point P as seen form O is equal to the angle of depression of O as seen from P.

STRETCH YOURSELF

- 1. The string of a kite is $100m \log and it$ makes an angle of 60° with the horizontal. Assuming that there is no slack in the string, calculate the height of the kite.
- 2. A 12m heigh tree is broken by the wind in such a way that its top touches the ground and makes an angle of 30° with the ground. Find the height at which tree is broken.
- 3. Find the value of A, if $\sin 2A = 2\sin A$ where $0 \le A \le 90^{\circ}$.

ANSWERS

CHECK YOUR PROGRESS :

- 1. A 2. A 3. $\frac{7}{4}$
- 4. $\angle A = 30^{\circ}, \angle B = 60^{\circ}$
- 5. $\angle A = 60^{\circ}, \angle B = 30^{\circ}$

STRETCH YOURSELF :

- $1.50\sqrt{3}$ m
- 2.4m
- 3. 0[°]