26

PROBABILITY

- Probability: Probability is that branch of mathematics which deals with the measure of uncertainity in various phenomenon that gives several results/out comes instead of a particular one.
- Definition of probability: Numerical measure of 'Uncertainity' and denoted by $\mathrm{P}(\mathrm{E})$.
- Experiment: An activity which produce some well defined outcomes
- Random Experiment: An experiment in which all possible outcomes are known but the results can not be predicted in advance.
- Trial: Performing an experiment.
- Outcome: Result of the trial
- Equally likely outcomes: Outcomes which have equal chances of occurance.
- Sample space : Collection of all possible outcomes
- Some special sample spaces:

Coin tossed once $\mathbf{n}(\mathbf{s})=\mathbf{2}=\mathbf{2}^{\mathbf{1}}$	$\mathbf{S}=\{\mathbf{H}, \mathbf{T}\}$,		
Coin tossed twice or two coins tossed simultaneously	$\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$, $\mathrm{n}(\mathrm{s})=4=2^{2}$.		
Coin tossed thrice or three coins tossed simultaneously	$\mathrm{S}=\{\mathrm{HHH}, \mathrm{HTH}, \mathrm{HHT}$,		
THH, TTT, TTH,			
Die is thrown once	$\mathrm{n}(\mathrm{s})=8=2^{3}$.	,	$\mathrm{S}=\{1,2,3,4,5,6\}$,
:---			
$\mathrm{n}(\mathrm{s})=6=6^{1}$.	,		

Die is thrown	$\mathrm{S}=\{(1,1),(1,2),(1,3)$,
twice or two dice	$(1,4),(1,5),(1,6)$,
are thrown	$(6,6)\}, \mathrm{n}(\mathrm{s})=36=6^{2}$.
simultaneously	

- Event: Collection of some including no outcome or all outcomes from the sample space.
- Probability of an event:
$P(E)=\frac{\text { no of outcomes favourable to the event }}{\text { Total no.of outcomes in the sample space }}$
$=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}$
- Sure Event: If no. of outcomes favourable to the event is equal to no. of total outcomes of the sample space or an event whose probability is 1 .
- Impossible Event: Having no outcome or an event whose probability is 0 .
- Range of Probability: Probability of an event always lies between 0 and 1 (0 and 1 inclusive) i.e. $0 \leq \mathrm{P}(\mathrm{E}) \leq 1$.
- Complementary Event: Event which occurs only when E does not occur and denoted by $\overline{\mathrm{E}}$.
Probability of a complementary Event
$\mathrm{P}(\overline{\mathrm{E}})=1-\mathrm{P}(\mathrm{E})$
- Sum of Probabilities: Sum of all the probabilities is 1 i.e $\mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}_{1}\left(\mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right)-$ $+\mathrm{P}\left(\mathrm{E}_{\mathrm{n}}\right)=1$ and $\mathrm{P}(\mathrm{E})+\mathrm{P}(\overline{\mathrm{E}})=1$.

CHECK YOUR PROGRESS:

1. A die is thrown once. The probability of getting a prime number is :
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) $\frac{1}{3}$
(D) $\frac{1}{6}$
2. Two coins are tossed once. The Probability of getting atleast one head is :
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) 1
3. A card is drawn from a pack of 52 cards. The probability that it is a face card, is :
(A) $\frac{4}{13}$
(B) $\frac{3}{13}$
(C) $\frac{2}{13}$
(D) $\frac{1}{13}$
4. A pair of dice is thrown once. The probability of having a sum 11 on the two dice is :
(A) $\frac{1}{36}$
(B) $\frac{1}{12}$
(C) $\frac{1}{18}$
(D) $\frac{1}{9}$
5. Which of the following cannot be the probability of an event-
(A) $\frac{2}{3}$
(B) 15%
(C) 0.7
(D) 1.5
6. A coin is thrown twice. Find the probability of getting one head.
7. A die is thrown once. Find the probability of getting an even number.
8. A card is drawn from a well-shuffled deck of 52 playing cards. Find the probability that it is not an ace.

STRETCH YOURSELF

1. Cards marked with numbers $3,4,5 \ldots 19$ are kept in a box and mixed thoroughly. If one card is drawn at random from the box, find the probability of getting.
(i) A prime number (ii) A perfect square
2. A bag contains 12 balls out of which x are white. If 6 more white balls are put in the bag, the probability of getting a white ball becomes double. Find the value of x.
3. Find the probability of getting 53 Sundays in a non leap year.
4. If a number x is chosen from the numbers 1 , 2,3 and a number y is selected from the numbers $1,4,9$, then find $\mathrm{P}(\mathrm{xy}<9)$.

ANSWERS

CHECK YOUR PROGRESS :

1. A
2. C
3. B
4. C
5. D
6. $\frac{1}{2}$
7. $\frac{1}{2}$
8. $\frac{12}{13}$

STRETCHYOURSELF:

1. (i) $\frac{7}{17}$
(ii) $\frac{3}{17}$
2. 3
3. $\frac{1}{7}$
4. $\frac{5}{9}$
