National Institute of Open Schooling (NIOS) Secondary Course
 Lesson -16: Angles in a Circle and Cyclic Quadrilaterals Worksheet - 16

1. Prove that angle in a semicircle is a right angle.
2. In figure, ' O ' is the Circumcentre of the $\triangle \mathrm{ABC}$ and D is the mid-point of the base BC .

Prove that $\angle \mathrm{BOD}=\angle \mathrm{A}$

3. Prove that a cyclic parallelogram is a rectangle.
4. If the non-parallel sides of a trapezium are equal, prove that it is cyclic trapezium.
5. ABCD is cyclic quadrilateral in which AC and BD are its diagonals. If $\angle \mathrm{DBC}=55^{\circ}$ and $\angle B A C=45^{\circ}$, find $\angle B C D$
6. Prove that the sum of the opposite angles of a cyclic quadrilateral is 180°
7. Prove that quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.
8. ABCD is a cyclic quadrilateral, if angle $\mathrm{C}=$ angle $\mathrm{B}=55^{\circ}$, find the angle A and angle D
9. Two circles intersect in A and B. AC and AD are diameter of the circles. Prove that C, B and D are collinear.
10. Justify that three collinear points are neither Concyclic nor noncyclic

