Some Special Sequences

Series:

- A series is associated with Sequence. A series is a sum of terms with definite order.
- An expression of the form $u_1 + u_2 + \cdots u_n$ is called series, where $u_1, u_2 \dots$ is a sequence of numbers. Denoted by $\sum_{r=1}^{n} u_r$

If n is finite then the series is finite series, otherwise the series is infinite.

• Sum of the powers of the first n-natural numbers

$$Sn = \frac{n(n+1)}{2}$$

• Sum of squares of the first n-natural numbers

$$Sn = 1^2 + 2^2 + 3^2 + --- + n^2$$

$$Sn = \frac{n(n+1)(2n+1)}{6}$$

$$\sum n^2 = \frac{n(n+1)(2n+1)}{6}$$

 The sum of the Cubes of the first n-natural numbers

$$Sn = 1^3 + 2^3 + 3^3 + --- \mp n^3$$

$$\sum n^3 = \left[\frac{n (n+1)}{2} \right]$$

• The sum of the series the n tn term of the series (tn), $Sn = \sum tn$

Check Your Self

Find the sum of the following series to n terms

1.
$$\frac{1^2}{1} + \frac{1^2 + 2^2}{1+3} + \frac{1^2 + 2^2 + 3^2}{1+3+5} + \cdots$$

2.
$$1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots$$

8.
$$2^2 + 4^2 + 6^2 + \cdots$$

9.
$$1.2^2 + 2.3^2 + 3.4^2 + \cdots$$

$$10.2 + 10 + 30 + 68 + 130 + \dots$$

Hint to check yourself

1.
$$\frac{n}{24}(2n^2 + 9n + 12)$$

2.
$$\frac{n}{12}(n+1^2)(n+2)$$

3.
$$\frac{n}{12}(n+1)(9n^2+25n+14)$$

4.
$$\frac{n}{6}(n+1)(n+2)$$

5.
$$\frac{n}{12}(n+1)(3n^2+23n+34)$$

Senior Secondary Course Learner's Guide, Mathematics (311)

6.
$$\frac{1}{2}(3^n + 8n - 1)$$

7.
$$\frac{n}{6}(n^2+3n+8)$$

8.
$$\frac{2n}{3}(n+1)(2n+1)$$

9.
$$\frac{n}{2}(n+1)(n+2)(3n+5)$$

$$10.\frac{\bar{n}}{4}(n+1)(n^2+n+2)$$