MOTION IN A PLANE

Projectile Motion

- The motion which has constant velocity in a certain direction and constant acceleration in a direction perpendicular to that of velocity

The two important properties of a projectile motion are :
(i) a constant horizontal velocity component
(ii) a constant vertically downward acceleration component.

Maximum height, time of flight and range of a projectile

Maximum height

At the instant when the projectile is at the maximum height, the vertical component of its velocity is zero.

$$
\mathrm{h}=\frac{v_{0}^{2} \sin _{\theta}^{2}}{2 g}
$$

The total time for which the projectile is in the air. This is termed as the time of flight

Time of Flight

The time of flight of a projectile is the time interval between the instant of its launch and the instant when it hits the ground.

$$
T=\frac{2 v_{0} \sin \theta_{0}}{g}
$$

Range

the path of any projectile launched at an angle to the horizontal is a parabola or a portion of a parabola.

$$
R=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g}
$$

The trajectory of a projectile

$$
\begin{aligned}
& y=y_{o}+(\tan \theta)\left(x-x_{0}\right) \\
&-\frac{g}{2\left[\left(v_{0} \cos \theta_{0}\right)^{2}\right]}(x \\
&\left.-x_{0}\right)^{2}
\end{aligned}
$$

Circular Motion

It is a movement of object along the circumference of a circle along a circular path

$$
v_{a v}=\frac{\Delta r}{\Delta t}
$$

Uniform Circular Motion
uniform circular motion is motion with constant speed in a circle.
$\mathrm{V}=\log _{\Delta t \rightarrow 0} \frac{\Delta_{r}}{\Delta_{t}}$

Centripetal Acceleration

$\mathrm{a}=\frac{v^{2}}{r}$
$\mathrm{v}=\mathrm{r} \omega$
$\mathrm{F}=\frac{m v^{2}}{r}$
$\mathrm{F}=m r \omega^{2}$

Acceleration $=$ Rate of change of velocity

Applications of Uniform Circular Motion

An important thing to understand and remember is that the term 'centripetal force' does not refer to a type of force of interaction like the force of gravitation or electrical force.

Banking of Roads

$$
\begin{gathered}
F_{N} \sin \theta=\frac{m v^{2}}{r} \\
F_{N} \cos \theta=m g \\
\theta=\tan ^{-1} \frac{v^{2}}{r g}
\end{gathered}
$$

AIRCRAFTS IN VERTICAL LOOPS

CHECK YOURSELF

1. A shell is fired at an angle of 60° to the horizontal direction with a velocity of $392 \mathrm{~ms}^{-1}$ time of flight is
A. 68.235
B. 69.235
C. 70.235
D. 71.235
2. A body is projected with a velocity of $40 \mathrm{~ms}^{-1}$ after 2 s it crosses a tower of height 20.4 m . angle of projection is
A. 45°
B. 30°
C. 90°
D. 60°
3. Centripetal force acting on the particle is given
A. $\mathrm{F}=\mathrm{mr} \omega^{2}$
B. $\mathrm{F}=\mathrm{mr}^{2} \omega^{2}$
C. $\mathrm{F}=\mathrm{m} / \mathrm{r} \omega^{2}$
D. $F=m r / \omega$
4. In a circular motion.
A. Speed is constant
B. Speed and velocity constant
C. Velocity is constant
D. None of the above

Answer to check yourself

1B) 2B) 3A) 4A) 5A)
5. Range of the projectile is expressed as
A. $R=V_{0} \sin \theta$
B. $R=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g}$
C. $R=\frac{v_{0}^{2} \text { si } \quad 0}{g}$
D. $R=\frac{v_{0}^{2} \sin 2 \theta_{0}}{2 g}$

STRETCH YOURSELF

1. Why does a bike rider bend inward while taking a turn on a circular path?
2. A stone tied at the end of string is whirled in a circle. If the string breaks, the stone flies away tangentially why?
3. What is uniform circular motion explain
4. Find a time of flight max height, horizontal range of projection with speed v_{0} making an angle with horizontal direction form ground.
5. A car is rounding a curve of radius 100 m at a speed of $70 \mathrm{kmh}^{-1}$ what is the centripetal force on a passenger of mass $\mathrm{m}=100 \mathrm{~kg}$
