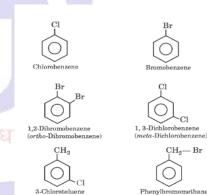
SENIOR SECONDARY COURSE: CHEMISTRY (313)

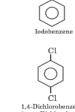
25

COMPOUNDS OF CARBON CONTAINING HALOGENS

- The replacement of hydrogen atom(s) in hydrocarbon, aliphatic or aromatic, by halogen atom(s) results in the formation of alkyl halide (haloalkane) and aryl halide (haloarene), respectively.
- Haloalkanes (Alkyl halides) are halogen derivatives of alkanes with general formula

 $[C_nH_{2n+1}X]. (X = F, Cl, Br or I)$


- Haloarenes (Aryl halides) are halogen derivatives of arenes with general formula Ar-X.
- Since halogen is more electronegative than C, hence C ñ X bond is polar.


 $\mathring{C}^+ \mathring{X}^-$

- If multiple bonds (double or triple bond) is present, then it is given the preference in numbering the carbon chain.
- The IUPAC name of any halogen derivative is always written as one word.

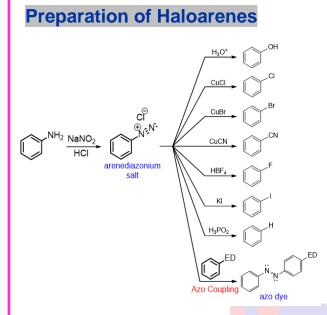
Nomenclature of Haloarenes

- Aryl halides are named by prefixing "halo" to the name of the parent aromatic hydrocarbon.
- If there is more than one substituent on the ring then the relative positions of the substituents are indicated by mathematical numerals.
- In the common system, the relative position of two groups is shown by prefixes ortho, meta or para.

PREPARATION OF HALOALKANES AND HALOARENES

Preparation of Haloalkanes

$R-OH + HX \xrightarrow{ZnCl_2} R-X + H_2O$
$R-OH + NaBr + H_2SO_4 \longrightarrow R-Br + NaHSO_4 + H_2O$
$3R-OH + PX_3 \longrightarrow 3R-X + H_3PO_3$ (X = Cl, Br)
$R-OH + PCl_5 \longrightarrow R-Cl + POCl_3 + HCl$
$R-OH \qquad \frac{\operatorname{red} P/X_{a}}{X_{a}=Br_{a},I_{a}} R-X$
$R-OH + SOCl_2 \longrightarrow R-Cl + SO_2 + HCl$


NOMENCLATURE OF HALOALKANES AND HALOARENES

Nomenclature of Haloalkanes

- Select the longest chain of carbon atoms containing the halogen atom.
- Number the chain to give the minimum number to the carbon carrying halogen atom.

Table 25.1: Names of Some Haloalkanes		
Formula	Common name	IUPAC name
CH₃ – Cl	Methyl chloride	chloromethane
CH ₃ – CH ₂ – Br	Ethyl bromide	bromoethane
$CH_3 - CH_2 - CH_2 - I$	n-propyl iodide	1-iodopropane
CI I CH₃ – CH – CH₃	Isopropyl chloride	2-chloropropane
$CH_3-CH_2-CH_2-CH_2-Br$	n-butyl bromide	1-bromobutane
Br I CH3 – CH2 – CH – CH3	sec-butyl bromide	2-bromobutane
CH3 I CH3 – C – Br I CH3	tert-butyl bromide	2-bromo-2-methylpropane
CH₃ I CH₃ − CH − CH₂ − Br	Isobutyl bromide	1-bromo-2-methylpropane
$\begin{array}{c} CH_3\\ I\\ CH_3-C\\ -CH_2-Br\\ I\\ CH_3\end{array}$	Neopentyl bromide	1-bromo-2,2-dimethylpropane

SENIOR SECONDARY COURSE: CHEMISTRY (313)

PROPERTIES OF HALOALKANES AND HALOARENES

Physical Properties of Haloalkanes

- 1. Boiling point orders
- 1. $R-I \ge R-Br \ge R-CI \ge R-F$
- 2. $CH_3 (CH_2)_2 CH_2Br > (CH_3)_2 CHCH_2Br > (CH_3)_3CBr$
- $3. \ CH_{3}CH_{2}CH_{2} > CH_{3}CH_{2}X > CH_{3}X$

छि। वनम् सवद

- 2. Bond strength of haloalkanes decreases as the size of the halogen atom increases. Thus, the order of bond strength is:
- **3. Dipole moment** decreases as the electronegativity of the halogen decreases.
- **4. Haloalkanes** though polar but are insoluble in water as they do not form hydrogen bonding with water.
- 5. Density order is

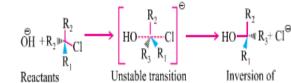
RI > RBr > RCl > RF (For the same alkyl group)

 $CH_{3}I > C_{2}H_{5}I > C_{3}H_{7}I$

Physical Properties of Aryl Halides

- 1. Aryl halides are colourless liquids or colourless solids with characteristic odour.
- 2. Boiling point generally increases with increase in the size of aryl group or halogen atom. Boiling point order is:

Ar - I > Ar - Br > Ar - Cl > Ar - F


- **3. The melting point** of p -isomer is more than o- and m- isomer. This is because of more symmetrical nature of p-isomer.
- **4. Due to resonance** in chlorobenzene, C-CI bond is shorter and hence, its dipole moment is less than that of cyclohexylchloride.

Chemical Properties of Haloalkanes and Haloarenes

Nucleophilic Substitution Reactions

 $Nu^{\otimes} \xrightarrow{\delta^+} C - X \xrightarrow{\delta^-} -C - Ni + X^{\otimes}$ haloalkane

(a) Substitution nucleophilic bimolecular (S_N^2) :



state

configuration

Named Reactions

(a) Sandmeyer Reaction :


(b) Finkelstein Reaction :

 $R - X + NaI \xrightarrow{dry acctone} R - I + NaX$ (X = Cl, Br)

CHEMISTRY (313)

CHEMISTRY (313)

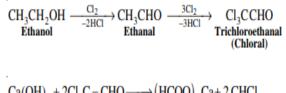
Distinguishing test for alkyl chlorides, bromides and iodide

Alkyl chlorides react with AqNO₃ to give white precipitate which is soluble in alcoholic ammonium hydroxide. Alkyl bromides react with AgNO3 to give a yellow precipitate which is sparingly alcoholic soluble in ammonium hydroxide. Alkyl iodides react with AgNO₃ to give dirty yellow precipitate, insoluble which is in alcoholic ammonium hydroxide.

E.g.,

$$CH_3 - Cl \xrightarrow{HNO_4} AgCl \downarrow$$

White ppt.


Vinyl and aryl halides do not yield silver halide under these conditions.

SOME USEFUL POLY HALOGEN

Chloroform

Chlorofom is a derivative of the simplest hydrocarbon, methane. Its IUPAC name is trichloromethane.

Preparation

 $Ca(OH)_2 + 2Cl_3C - CHO \longrightarrow (HCOO)_2Ca + 2CHCl_3$

Calcium chloroform formate

lodoform

Iodoform is a pale yellow solid with a distinct smell. Its IUPAC name is triiodomethane.

Preparation

$$CH_3COCH_3+3I_2+4$$
 NaOH \longrightarrow $CHI_3+CH_3CONa+3NaI+3H_2O$
Acetone Iodoform

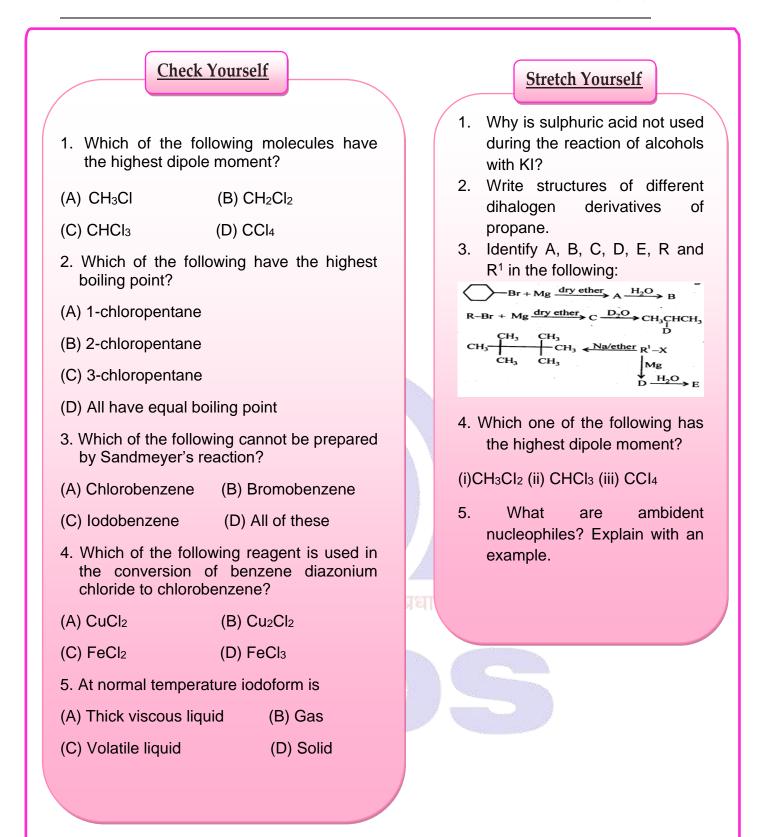
Dichlorodiphenyltrichloroethane (DDT)

- It is available in several different forms : powder, aerosols, granules, etc.
- Uses: It is used mainly to control mosquito-borne malaria. It is also used as an argicultural insecticide. The use of DDT has been banned in many countries because being non-biodegradable, it accumulates in environment. It is toxic to other living organisms such as: mammals, birds, fishes, etc.

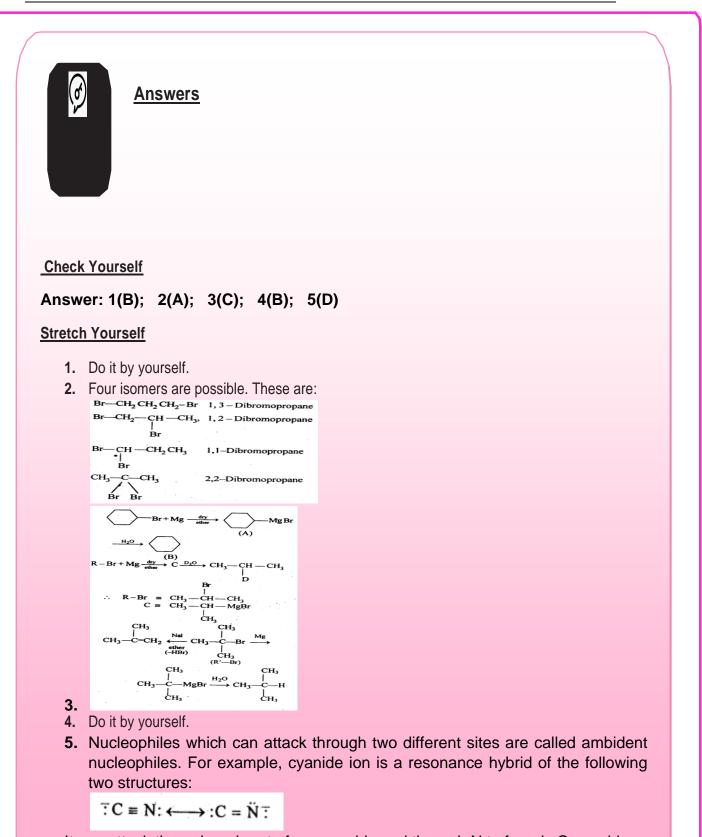
Test Yourself

Question: Show the polarization of carbon-magnesium bond in the following structure.

 $\mathbf{CH}_3-\mathbf{CH}_2-\mathbf{CH}_2-\mathbf{CH}_2-\mathbf{Mg}-\mathbf{X}$


Answer:

 $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 \xrightarrow{\delta^-} Mg - X$ Carbon is more electronegative than magnesium.


CHEMISTRY (313)

LEARNER'S GUIDE

SENIOR SECONDARY COURSE: CHEMISTRY (313)

SENIOR SECONDARY COURSE: CHEMISTRY (313)

It can attack through carbon to form cyanide and through N to form is O cyanide.