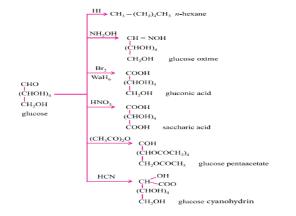

29

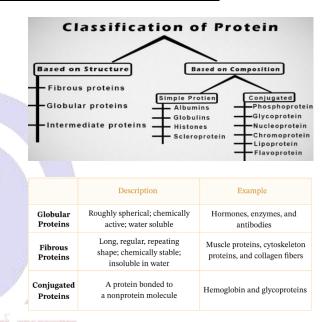

BIOMOLECULES

 $(C_6H_{10}O_5)_n + nH_2O \rightarrow C_{12}H_{22}O_{11} + H_2O \rightarrow 2C_6H_{12}O_6$ glucose

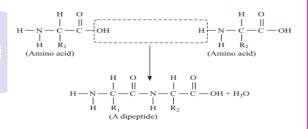
monosaccharides on hydrolysis.

Reactions of glucose:

Objections against open chain structure of glucose


- The open chain structure was unable to explain the following reactions :
- (a) It does not give the 2, 4-DNP test, Schiffís test and does not form the hydrogensulphide product with NaHSO₃.
- (b) The pentacetate of glucose does not react with NH₂OH, indicating the absence of free aldehydic group.
- (c) Glucose exists in 2 different crystalline forms α and β forms These are called anomers. They differ in optical rotation; they also differ in melting point.
- After which a close chain (cyclic) structure of glucose was proposed by Haworth.
- Anomers are isomers which have a different configuration at C-1 functional group C-atom
- Glycosidic linkage: The linkage between two monosaccharide units through oxygen is called the glycosidic linkage.

PROTEINS


These are macro molecules made up of amino acids joined by amide linkage [-(-CONH-)-] is here called as peptide linkage. These are required for growth and development of the body.

Amino acids: These contain an amino (-NH₂) and an acidic (-COOH) group and are therefore amphoteric in nature. In solution they exist in the form of zwitter ion (a dipolar ion).

Classification of Proteins

Structure of Proteins

Table: Difference between Primary, Secondary, Tertiary and Quaternary Protein Structure

Primary struc-	Secondary struc-	Tertiary struc-	Quaternary struc-
ture	ture	ture	ture
quence of ami- no acids in the polypepide chain. Change in amino acids sequence changes the pro- tein completely.	which the long polypeptide chain can exist. It is of two types : α -he- lix and β -pleated. These structures arise due to regu-	overall folding of the poly- peptide chain. It gives rise to the fibrous or globular mo- lecular shapes. Forces stabiliz- ing the 2° and 3° structures are hydrogen bonds, disul- phide linkages,	Protein can be com- posed of two or more polypeptide chains called sub-units. The spatial arrangement of these sub-units with respect to each other is quaternary structure of the pro- tein.

- Native state of protein: The parental state or the natural state in which the protein is found.
- Denaturation of protein: Destruction of the native state of protein is denaturation. It can be brought by physical and chemical methods. The 2° and 3° structures are destroyed; only 1° structure is retained.
- Enzymes: These are biocatalyst and generally globular proteins e.g., invertase, zymase, phenyl, alaninehydroxylase, urease etc.

Main characteristics of enzymes:

- (i) It speeds up the biological reaction upto million times.
- (ii) It is highly speci c and work on lock and key theory.
- (iii) It is highly sensitive to pH and temperature.

Enzymes

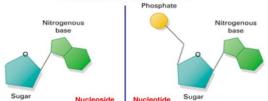
- These are biocatalyst and generally globular proteins e.g., invertase, zymase, phenyl, alaninehydroxylase, urease etc.
- (ii) It is highly specific and work on lock and key theory.
- (iii) It is highly sensitive to pH and temperature.

Vitamins

- They are organic compounds required in the diet in small amounts to perform speci c biological functions for maintenance of optimum growth and health of the organism. They are classified as follows :
- (i) Fat soluble vitamins: Vitamin A, D, E and K. They are stored in liver and adipose tissues.
- (ii) Water soluble vitamins: B group vitamins and vitamin C. They need to supplied regularly in diet as they are

excreted in urine and cannot be stored (except vitamin B₁₂) in our body.

Their deficiency causes diseases. Biotin (Vit H) is however neither fat nor water soluble. Its deficiency leads to loss of hair.


Vitmains/Minerals	Deficiency Diseases	Symptoms
Vitamin A	Night blindness	Poor vision, loss of vision in darkness
Vitamin B1	Beriberi	Weak muscles, fatigue
Vitamin C	Scurvy	Bleeding gums
Vitmain D	Rickets	Bent bones
Calcium	Osteomalacia	Weak bones, tooth decay
Iodine	Goitre	Swelling in neck
Iron	Anaemia	General weakness, fatigue

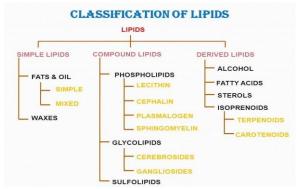
Nucleic acids

- These are biomolecules which are long chain polymers of nucleotides. They are of two types :
- (i) Deoxyribonucleic acid (DNA)

(ii) Ribonucleic acid (RNA)

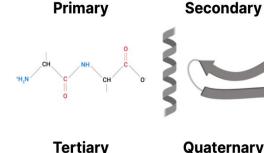
- Nuceloside = Base + Sugar
- Nucleotide = Base + Sugar + Phosphate
 Nucleoside versus Nucleotide

Nucleoside: - Nitrogenous base (an heterocyclic aromatic ring) - (Deoxy)ribose sugar—a pentose with a furanose ring


- Nucleotide:
- Nucleotide: • Nitrogenous base (an heterocyclic aromatic ring) • (Deoxy)ribose sugar—a pentose with a furanose ri

(Deoxy)ribose sugar—a pentose with a furanose ring One or more phosphate groups (attached to the sugar)

One or more pho	osphate groups	(attached t	to the sugar)


	DNA	RNA		
Acid Name	DeoxyriboNucleic	RiboNucleic		
Stability	Very stable (long "life")	Less stable (short "life")		
Found in	Nucleus	Nucleus and cytosols		
	Mitochondria (most eukaryotes)			
	Plastids (plant cells)			
Function	Static, digital genetic data storage	Dynamic, many varied funvtions		
Copier Enzyme	DNA polymerase	RNA polymerase		
Structure	Long nucleotide chain	Short nucleotide chain		
	Two complementary strands	One strand		
	A-, B- or C-form helix	A-form helix only		
"Pookhono"	Inorganic phosphate			
"Backbone"	Deoxyribose (D in DNA)	Ribose (R in RNA)		
Nucleobases	Thymine, Cytosine, Adenine, Guanine	Uracil replaces Thymine		
Base Pairing	A⇔T (Adenine to Thymine)	A↔U (Adenine to Uracil)		
	G⇔C (Guanine to Cytosine)			
EM Radiation	Somewhat UV sensitive	Relatively UV resistant		

LIPIDS: A lipid is any of various organic compounds that are insoluble in water. They include fats, waxes, oils, hormones, and certain components of membranes and **function** as energy-storage molecules and chemical messengers.

HORMONES

- Hormones are chemical messengers which are secreted by endocrine glands. They are carried through the blood stream to the target tissues.
- Majority of the hormones in humans are steroids. The two important classes of steroid hormones are sex hormones and adrenocortical hormones.
- Proteins are very important to us and perform many functions in a cell that are absolutely necessary for our survival.

Tertiary

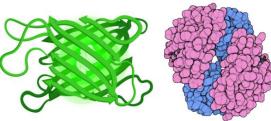


Fig. 29.1: The structure of protein

- Chief sources of proteins are pulses, milk, meat, eggs, etc.
- Enzymes are biocatalysts which speed up the reactions in biosystems. Chemically all enzymes are proteins. They are very specific and selective in their action on substrates.

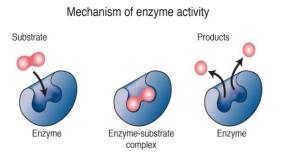


Fig. 29.6: Lock and Key arrangement of enzyme action

- **Biological Importance of Proteins** are:
- (i) Proteins are structural components of cells.
- (ii) The biochemical catalysts known as enzymes are proteins.
- (iii) The proteins known as immunoglobins serve in defence against infections. Compounds
- (iv) Many hormones, such as insulin and glucagon are proteins.

Test Yourself

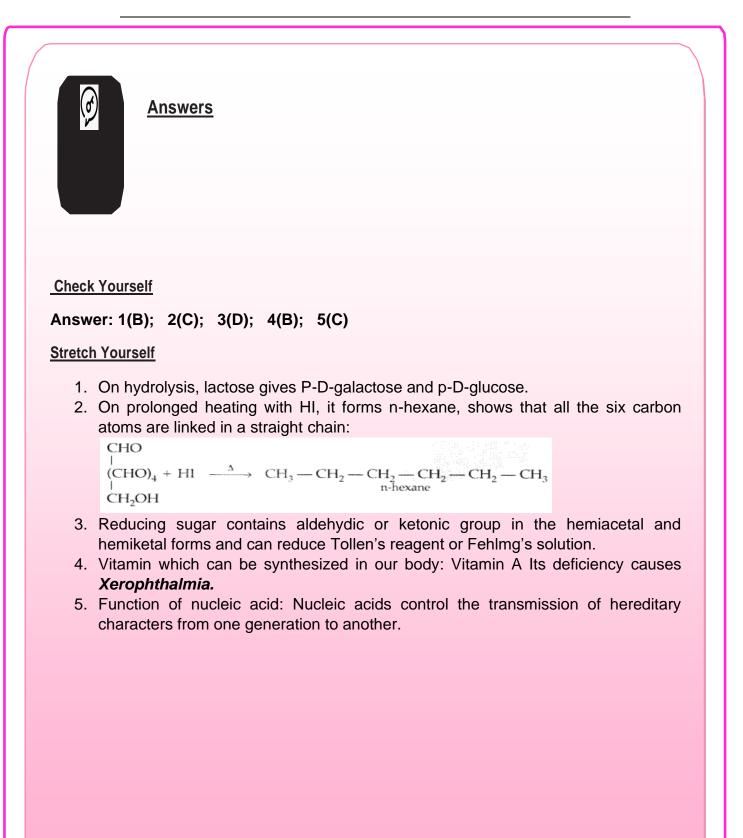
Question: Name a water soluble vitamin which is powerful а antioxidant. Give its one natural source.

Answer: Water soluble vitamin: Vitamin C

Natural source: Amla

Check Yourself

- During acetylation of glucose it needs, v moles of acetic anhydride. The value of x would be
- (A) 3 (B) 5 (C) 4 (D) 1
- 2. On oxidation with a mild oxidising agent like Br₂/H₂O, the glucose is oxidized to
- (A) Saccharic acid (B) Glucaric acid
- (C) Gluconic acid (D) Valeric acid
- 3. Invert sugar is
- (A) A type of cane sugar
- (B) Optically inactive form of sugar
- (C) Mixture of glucose and galactose
- (D) Mixture of glucose and fructose in equimolar quantities
- 4. Which of the following compounds is found abundatly in nature?
- (A) Fructose (B) Starch
- (C) Glucose (D) Cellulose
- 5. Glycosidic linkage is an
- (A) Amide linkage
- (B) Ester linkage
- (C) Ether linkage
- (D) Acetyl linkage


Stretch Yourself

- 1. What are the expected products of hydrolysis of lactose?
- 2. Write a reaction which shows that all the carbon atoms in glucose are linked in a straight chain.
- 3. What is meant by 'reducing sugars'?
- Name the only vitamin which can be synthesized in our body. Name the disease caused due to the deficiency of this vitamin.
- 5. Mention one important function of nucleic acids in our body.

धर्म प्रधानम्

LEARNER'S GUIDE

SENIOR SECONDARY COURSE: CHEMISTRY (313)

