National Institute of Open Schooling Senior Secondary Lesson 26 - Wave Phenomena and Light WORKSHEET - 26

Q1. Calculate the mass of oxygen atom in amu and also calculate energy.
Q2. If $m_{e}=0.00594 u, m_{p}=1.007276 u, m_{n}=1.008665 u, m\left(\mathrm{He}^{3}{ }_{2}\right)=3.016030 \mathrm{u}$. Calculate mass defect.

Q3. Complete

Q4. Calculate the numbers of neutron and proton in $\mathrm{Cl}^{35}{ }_{17}, \mathrm{U}^{235}{ }_{92}, \mathrm{Ac}^{228}{ }_{89}, \mathrm{Po}^{216}{ }_{84}$.
Q5. Nuclear radius of $\mathrm{O}^{16}{ }_{8}$ is $3 * 10^{-15} \mathrm{~m}$ what will be the nuclear radius of Bi^{212}.
Q6. You are given two nuclides of $\mathrm{Y}^{7}{ }_{3}$ and $\mathrm{Y}^{4}{ }_{3}$ are the isotopes of same element. Which one is more stable? Explain?

Q7. What is nuclear binding energy. Drive mathematical expression for B.E.
Q8. Define alpha, beta, gamma decay in terms of
$>$ Intensity
> Charge
$>$ Ionising power
$>$ Mass
$>$ Energy
$>$ Speed.
Q9. The half life of radium is 1000 years. After how many years will 1 g of pure radium reduce to 1 mg .

