
12

INPUT AND OUTPUT OF DATA

12.1 INTRODUCTION

In ‘C’ language input and output of data is done by a collection of

library functions like getchar, putchar, scanf, printf, gets and puts.

These functions permit the transfer of information between the com-

puter and the standard input/output devices. The library function

getchar and putchar as the name suggests, allow single characters

to be transferred into and out of the computer, scanf and printf

permit the transfer of single characters, numerical values and strings,

gets and puts facilitate the input and output of strings. An input/

output function can be accessed from anywhere within a program

simply by writing the function name, followed by a list of param-

eters enclosed in parentheses. Some input/output functions do not

require parameters, but the empty parentheses must appear. ‘C’

include a collection of header file that provide necessary informa-

tion in support of the various library functions. The header file stdio.h

contains the information about input/output library functions. In

this lesson we will discuss some input/output functions in detail.

12.2 OBJECTIVES

After going through this lesson you would be able to

l explain getchar function

l define putchar function

192 :: Computer Applications

l explain scanf function

l explain printf function

l describe gets & puts function

l use interactive programming

12.3 GETCHAR FUNCTION

getchar function reads a single character from standard input. It

takes no parameters and its returned value is the input character.

In general, a reference to the getchar function is written as charac-

ter variable = getchar();

For example char c;

c= getchar () ;

The second line causes a single character to be entered from the

standard input device and then assigned to c.

If an end-of-file condition is encountered when reading a character

with the getchar function, the value of the symbolic constant EOF

will automatically be returned.

This function can also be used to read multicharacter strings, by

reading one character at a time within a multipass loop.

12.4 PUTCHAR FUNCTION

The standard C function that prints or displays a single character

by sending it to standard output is called putchar. This function

takes one argument, which is the character to be sent. It also re-

turns this character as its result. If an error occurs, an error value is

returned. Therefore, if the returned value of putchar is used, it should

be declared as a function returning an int.

For example putchar (‘N’);

putchar (‘a’);

putchar (‘t’);

putchar (‘i’);

putchar (‘o’);

putchar (‘n’);

putchar (‘a’);

putchar (‘l’);

Input and Output of Data :: 193

When putchar is used, however, each character must be output

separately. The parameter to the function calls in the given state-

ments are character constants, represented between apostrophes

as usual. Of course, the arguments could be character variables

instead.

Two functions that require FILE pointers are getc and putc. These

functions are similar to getchar and putchar, except that they can

operate on files other than the standard input and output. The getc

function is called with one argument, which is a FILE pointer repre-

senting the file from which the input is to taken. The expression

getc(stdin) is similar to

getchar()

and the expression putc(c, stdout) is same as putchar(c).

INTEXT QUESTIONS

1. What is the difference between input and output ?

2. What are the restrictions related to the putchar function ?

3. Name the counterpart to the putchar function.

12.5 SCANF FUNCTION

Input data can be entered into the computer from a standard input

device by means of C library function scanf. This function can be

used to enter any combination of numerical values, characters single

character and strings. The function returns the number of data items

that have been entered successfully.

In general terms, the scanf function is written as

scanf (string, parameter 1, parameter 2…, parameter n);

 Where string= string containing certain required formatting

information, and Parameter 1, parameter 2.. = parameters that

represent the individual input data item.

The control string or string comprises individual groups of charac-

ters, with one character group for each input data item. Each char-

acter group must start with percent sign (%). In the string, multiple

character groups can be contiguous, or separated by white space

characters. The conversion character that is used with % sign are

194 :: Computer Applications

many in number and all have different meaning corresponding to

type of data item that is to be input from keyboard.

Some of the conversion characters are listed below:-

Conversion character Meaning

c type of data item is single character

d type of data item is decimal integer

e type of data item is floating-point value

f type of data item is floating-point value

h type of data item is short-integer

i type of data item is decimal, hexadecimalor

octal integer

o type of data item is octal integer

s type of data item is string

u type of data item is unsigned decimal

integer

[. . .] type of data item is string which may

include whitespace characters.

The parameters are written as variables or arrays, whose types match

the corresponding characters groups in the control string. Each vari-

able name must be preceded by an ampersand (&).

For example: Suppose there are 3 variables char name[10], int

roll_no, float marks, then the scanf statement for these 3 variables

will be

scanf(“%s %d %f,” name, &roll_no, &marks);

This statement contains three character groups. %s represents that

first parameter is string i.e name. The second character group %d,

represents that the parameter is decimal integer value, and third

character group %f represents that the parameter is floating point

value.

It is to be noted here that roll_no and marks that are only variables

not arrays and are preceded by ampersand sign unlike name which

is a character array. The order of data items depends upon the re-

quirement of user, but the order of character group should match

with the order of data items.

Input and Output of Data :: 195

If two or more data items are entered, they must be separated by

white space characters. Data items may continue onto two or more

lines, since the newline character is considered to be a whitespace

character.

It is already stated that s-type conversion character applies to a

string terminated by a whitespace character. Therefore, a string that

includes whitespace characters cannot be entered in this manner.

To do so the s-type conversion character within the control string is

replaced by a sequence of characters enclosed in square brackets

designated as […]. Whitespace characters may be included within

the brackets, thus accommodating strings that contain such char-

acters.

When the program is executed, successive characters will continue

to be read from the standard input device as long as each input

character matches one of the characters enclosed within the brack-

ets. The order of the characters within the square brackets need not

correspond to the order of the characters being entered. Input

characters may be repeated. The string will terminate, however once

an input character is encountered that does not match any of the

characters within the brackets. A null character \0 will then

automatically be added to the end of the string.

Another way to do this is to precede the characters within the square

brackets by a circumflex (^). This causes the subsequent characters

within the brackets to be interpreted in the opposite manner. Thus,

When the program is executed, successive characters will continue

to be read from the standard input device as long as each input

character does not match one of the characters enclosed within the

brackets. If the characters within the brackets are simply the

circumflex followed by a new line characters, then the string en-

tered from the standard input device can contain any ASCII charac-

ters except the newline character. For example:

char school [40];

scanf (“%[^\n]”, school);

Through this statement any string of undetermined length (but

not more than 40 characters) will be entered from the standard

input device and assigned to school.

“National Open School” is assigned to array ‘school’. If you want to

limit or to restrict the width of the data item you can define it with

the help of an unsigned integer indicating the field width is placed

196 :: Computer Applications

within the control string, between the % and the conversion charac-

ter.

The data item may be composed of fewer characters than the speci-

fied field width. But you cannot exceed the number of characters

in the actual data item than specified field width. Any character

that extend beyond the specified field width will not be read,

incorrectly interpreted as the components of next data item. Such

leftover characters may be

For example:

int x,y,z;

scanf(“%3d % 3d %3d”, & x, &y, &z);

If the data input from the keyboard is 1,2,3 then the result is

 x=1, y=2 , z=3 but suppose if the data input is 123 , 456, 789 then

it will result in

 x=123, y=456, z=789. If the input is 1234 5678 9 then x=123 y=4

z=567.

The remaining two digits (8 and 9) would be ignored, unless they

were read by a subsequent scanf statement.

If the control string contains multiple character groups without in-

terspersed whitespace characters, then whitespace characters within

the input data will be interpreted as a data item. To skip this and

read the next nonwhitespace character, the conversion group %s

should be used.

INTEXT QUESTIONS

4. What function enables a user to input information while the

program is in execution ?

5. If numeric or single-character information is being entered by

means of scanf function, what symbol must precede the corre-

sponding variable name ?

12.6 PRINTF FUNCTION

The printf function is used to print out a message, either on screen

or paper(The letter “f” in printf could stand for either “formatted” or

Input and Output of Data :: 197

“function”). It is equivalent to the WRITE statement in Pascal, only

more powerful. It is similar to the input function scanf except that

its purpose is to display data rather than to enter data into the

computer. So, printf function moves data from the computer’s

memory to the standard output device, whereas the scanf function

enters data from the standard input device and stores it in the

computer’s memory. The general form is:

printf(string, parameter1, parameter2,……, parameter n)

where string refers to a string that contains formatting information,

and parameter 1, parameter2… parameter n are arguments that

represents the individual output data items. The parameters can be

written as constants, single variable or array names or more com-

plex expressions.

Unlike scanf function, the parameters in a printf function do not

represent memory addresses and therefore they are not preceded

by ampersand (&) sign. The control string or string is composed of

individual groups of characters, with one character group for each

output data item. Each character group must start with a percent

sign like in scanf function followed by a conversion character indi-

cating the type of the corresponding data item. Multiple character

groups can be contiguous, or they can be separated by other

characters, including whitespace characters. Some of the conver-

sion characters are given below:

c type of data item is displayed as a single character

d type of data item is displayed signed decimal integer

e type of data item is displayed as a floating-point value with an

exponent

f type of data item is displayed as a floating-point value without

an exponent

o type of data item is displayed as an octal integer without a

leading zero.

s type of data item is displayed as a string

u type of data item is displayed as an unsigned decimal integer

x type of data item is displayed as a hexadecimal integer, with-

out the leading φx.

Let us consider an example of printf.

198 :: Computer Applications

Suppose there are 3 variables, char name[10], int roll_no, float marks,

then the printf statement to display all these 3 variables is printf(“%s

%d %f”’ name, roll_no, marks);

Within the printf function, the control string or string is “%s %d

%f”. It contains 3 characters groups. The first character group %s

indicates that the first parameter represents a string. The second

character group, %d indicates that the second parameter represents

a decimal integer value and the third character group %f indicates

that the third parameter represents a floating point value.

It is to be noted here that the parameters are not preceded by am-

persands as in scanf. The printf function interprets s-type conversion

differently than the scanf function. In the printf function,s-type con-

version is used to output a string terminated by the null character

(\0). Whitespace characters may be included within the string.

For example

char school[40];

scanf(“%[^\n]” ,school);

printf(“%s”,school);

If the string entered through keyboard is “National Open School”

then it will print it as it is on the screen through printf statement.

A concept of minimum field width in a printf statement, can be

specified by preceding the conversion character by an unsigned in-

teger. If the number of characters in the corresponding data item

is less than the specified field width, then the leading blanks will be

added in front of data item to fill the specified field. But if the num-

ber of characters in the corresponding data item is greater than the

specified field width then the extra space will be allocated to dis-

play the whole data item as contrary to scanf function in which

there is a concept of maximum field width as stated earlier.

It is also possible to specify the maximum number of decimal places

for a floating point value or the maximum number of characters for

a string. This is known as precision. This is an unsigned integer

that is always preceded by a decimal point. If a minimum field

width is specified in addition to the precision then the precision

specification follows the field width specification.

For example

float a= 456.789;

printf(“%7f % 7.3f %7.1 f”, a,a,a);

Input and Output of Data :: 199

The result is 456.789000 456.789 456.7

Minimum field width and precision specification can be applied to

character data as well as numerical data. When applied to a string,

the minimum field width is interpreted in the same manner as with

a numerical quantity. The field width specification will not prevent

the entire string from being displayed. The precision specification

will determine the maximum number of characters that can be dis-

played. If the precision specification is less than the total number

of characters in the string, the excess rightmost characters will not

be displayed. This will occur even if the minimum field width is

larger than the entire string, resulting in the addition of leading

blanks to the truncated string.

For example

char school[9];

printf(“%7s %12s % 12.3s %.3s, school , school,

school,school);

Suppose the string is ‘National’ then the output is

Nationa …. National………… Nat Nat

The first string is shown as input even this consists of 8 characters

and the field width specification is 7 characters. So it over rides the

minimum field width specification. The second string is padded with

4 leading blanks to make 12 as field width specification. Third string

is padded with 12 leading blanks and only 3 characters are shown

because of 3 character precision specification and the last string

also displays only 3 characters but there is no leading blank spaces

because of no minimum field width specification. So second string

in this case is right-justified in the output.

In addition to the field width, the precision and the conversion char-

acter, each character group within the control string can include a

flag, which affects the appearance of the output. The flag must be

placed immediately after the percent sign. Some of the flags are

given below with their common usage.

1. – data item is left-justified int i=346

within the field printf(“:%φ-6d”,i);

output :346

200 :: Computer Applications

2. + a sign (either + or-) will precede each signed int i=346

float f=-3.5

numerical data item; without printf(“:%-+6d%-10.1e”:,i,j);

this flag, only negative data output is:+346 some space

should be there–3. 5e+000:

items are preceded by a sign.

3. Zero causes leading zeros to appear

instead of leading blanks,

applies only to data items that

are right justified.Within a field whose minimum size is

larger than the data item.

4. ‘ ‘ a blank space will precede each

+ve signed numerical data item;

flag is override by the + flag if

both are present.

5. # causes octal and hexadecimal data

items to be preceded by Zero()

and x respectively.

In case of strings there is also a usage of flags. Let us see it with

the help of examples:

Suppose string is “ National Open”

1 printf(“:%s:\n”, “National :National Open: Normal Printing

Open”);

2 printf(“:%9s:\n”, “National :National Open: Min.field width

Open”);

3 printf(“:%17s:\n”, “National ….National Open: printed in a field

Open”); wider than the

string.

4 printf(“:%-17s:\n”, “National :National Open…. ; left justified

Open”); printed in a field

of 17.

5 printf(“:%17.6s:\n”, “National :………..Nation truncated to 6

Open”); characters

6 printf(“:%.6s:\n”, “National : Nation: : truncated to 6

Open”); characters

7 printf(“:%-17.6s:\n”, “National : Nation……: truncated to 6

Open”); characters left

justified in a field

of 12.

Input and Output of Data :: 201

Unrecognised characters within the control string or string will be

displayed just as they appear. This feature allows us to include

label and messages with the output data items if we want.

There is some variation in the features supported by the printf func-

tion in different versions of C.

INTEXT QUESTIONS

6. What conversion specification are used to print out the follow-

ing integer, a floating point number in decimal & scientific

notation & a single character ?

7. What is the minimum field width specifics, & where is it

located ?

8. When the conversion specification is %, what is its default field

width ?

12.7 GETS AND PUTS FUNCTION

‘C’ contains a number of other library functions that permit some

form of data transfer into or out of the computer. Gets and puts

functions facilitate the transfer of strings between the computer

and the standard input/output devices. Each of these functions

accepts a single argument or parameter. The parameter must be a

data item that represents a string. The string may include whitespace

characters. In the case of gets, the string will be entered from the

keyboard and will terminate with a newline characater.

The gets and puts functions are alternative use for scanf and printf

for reading and displaying strings.

For example:

char school[40];

gets(school);

puts(school);

These lines uses the gets and puts to transfer the line of text into

and out of the computer. When this program is executed, it will give

the same result as that with scanf and printf function for input and

output of given variable or array.

202 :: Computer Applications

12.8 INTERACTIVE PROGRAMMING

Interactive programming means to create an interactive dialog be-

tween user and computer. This is some sort of question and answer.

This can be created by alternate use of scanf and printf functions.

This type of interactive programming is useful in the case of useful

reports or data entry.

12.9 WHAT YOU HAVE LEARNT

In this lesson you have learnt about getchar and putchar function

in detail. You are now aware of scanf, printf functions which are

used for input of data from the keyboard and display of data to the

screen in a formatted way. You have also learnt the concept of gets

and puts which are equivalent to scanf and printf except for

formatting.

You can do interactive programming for your project work very easily

after going through this lesson.

12.10 TERMINAL QUESTIONS

1. What are the commonly used input/output functions in C?

How are they accessed ?

2. What is the standard input/output header file called in most

versions of C?

3. Explain the purpose of the getchar function.

4. Define the purpose of scanf function.

5. Summarize the meaning of the more commonly used conver-

sion characters within the control string of a scanf function.

6. What is the purpose of the printf function? How is it used within

a C program?

7. Explain the precision of an output data item.

8. Summarize the purpose of the flags commonly used within

printf.

9. How are unrecognized characters within the control strings of a

printf function interpreted ?

10. Explain the use of the gets and puts function ?

Input and Output of Data :: 203

12.11 KEY TO INTEXT QUESTIONS

1. Information that enters the computer from the outside is called

input, and information produced by the computer and sent to

the outside is known as output.

2 It can outputs only one character at a time, and only to the

standard output.

3 getchar function

4. scanf function

5. The ampersand (&) symbol.

6. Integer %d, floating point in decimal %f, with scientific notation

%e, a single character % c.

7. It specifies the smallest field in which a value is to be printed.

It is used in a conversion specification, and if present, it is placed

immediately following the % sign.

8. The size of the number being printed (including a minus sign,

if the number is negative.)

