
13

A COMPLETE C PROGRAM

13.1 INTRODUCTION

It is necessary to do some planning before starting actual

programming work. This planning will include the logic of the actual

program. After logical approach of the program, the syntactic details

of the language can be considered. This approach is often referred

to as “top-down” programming. Top-down program organization is

normally carried out by developing an informal outline, consisting

of phrases or sentences that are part of English and part of C lan-

guage. In the initial stages of program development, the amount of

C is minimal, consisting only of various elements that define major

program components, such as function headings, function refer-

ences etc. Additional details is then provided by descriptive english

material inserted between these elements, often in the form of

program comments. The resulting outline is usually referred to as

pseudocode. Another method sometimes used is the “bottom-up”

approach. This approach involves the detailed development of these

program modules early in the overall planning process.

13.2 OBJECTIVES

After going through this lesson you will be able to

l write a C program

l compile and execute the program

l detect and correct errors

A Complete C Program :: 205

13.3 WRITE C PROGRAM

Once the planning of a program has been formulated, the detailed

working development of C program can be considered. This includes

translation of each step of the program outline into one or more

equivalent C instructions.

There is more to do to write a complete C program than simply

arranging the individual declarations and statements in the right

order. There are some additional features to be added to enhance

the program’s readability and its resulting output. There must be

logical sequencing of the statements, the use of indentation, the

use of comments and the generation of clearly labeled output state-

ments and use of comments for enhancement of program readability.

The use of indentation is closely related to the sequencing of groups

of statements within a group. It describes the subordinate nature of

individual statements within a group. Comments should always be

included within a C program. They can identify certain key items

within the program and provide other useful information about the

program. The other important characteristic of a well-written pro-

gram is its ability to generate clear, legible output. When executing

an interactive program, the user may not know how to enter the

required input data. For example, the user may not know what data

items are required, when the data items should be entered, or the

order in which they should be entered. Thus a well written interac-

tive program should generate prompts at appropriate times during

the program execution in order to provide this information.

Let us consider an example of interactive program:

include < stdio.h>

/ * simple calculation of average marks* /

main ()

{

 float m1, m2, avg ;

/ * read input data * /

print (“please enter a value for marks m1 :\n”);

scanf (“%f”, & m1);

printf (“please enter a value for marks m2;”);

scanf(“%f”, & m2);

avg = m1+m2 / 2 ;

206 :: Computer Applications

/ * write output * /

printf (“/n the final value (avg) is: %f ”, avg);

}

The first line of this program is # include <stdio.h>, <stdio.h> is the

file which has definitions of standard input output files, this file

must be included in every C program as every program obviously

needs printf and scanf statements. The second line, main () function

which is followed by curly braces. Now comes the definition and

declaration of variables and functions as needed by the programmer.

After that there is body of the program which is actually the

syntactical conversion of logic of the program. The curly braces of

the main function should be end with closed curly braces.

Once the program has been written it must be entered into the

computer before it can be compiled and executed. This is usually

accomplished by one of two possible methods, the most common

being the use of an editor. Most computer systems include an editor

that is used to create and alter text file. Some editors are line-

oriented, while others are character-oriented. The commands within

a line-oriented editor permit various editing operations, such as

insert, delete, copy to be carried out on specified lines within the

text files. Character-oriented editors are generally used with

interactive terminals. They are also referred to as full-screen editors.

Any editor can be used to enter a C program and its accompanying

data files, though some C compilers are associated with operating

systems that include their own editors.

Regardless of particular editor being used, the procedure for creat-

ing a new program is to enter the program into a text file line-by-

line. The text file is then assigned a file name and stored either in

the computer’s memory or on an auxiliary storage device. Usually a

suffix, such as c is attached to the file name, thus identifying the

file as a C program. Such suffixes are called extensions. The program

will remain in this form until it is ready to be processed by C compiler.

13.4 COMPILING AND EXECUTING THE PROGRAM

Once a complete program has been correctly entered into the com-

puter, it can be compiled and executed. The compilation is usually

accomplished automatically in response to a single command say

compile sample, where sample refers to the name of the file con-

taining the program (sample.c). It may also be necessary to link the

A Complete C Program :: 207

compiled object program (sample.obj)with one or more library

routines in order to execute the program. This is done by the

command link sample. In the UNIX operating system the compile

and link steps can both be carried out using the single instruction

cc sample.c, resulting in an object program called sample.out. The

successful compilation and linking of a C program will result in an

executable object program that can then be executed in response to

an appropriate system command, such as execute. In UNIX, the

execution can be initiated simply by typing the name of the object

program i.e. sample.out

Let us consider the previous example of program average of 2 marks,

suppose the name of program is average. After writing the program

correctly, compilation must take place. This is done by compiling

average. The computer will respond by compiling the program,

resulting in a non executable object program called average.obj.

Typing errors, syntactic errors, and so on can easily be corrected by

reentering the editor and making the required changes. If the com-

pilation is carried out successfully, the next step is to link the program

with the program library routines. This is accomplished with the

command:-

link average

The result of the linking process will be the creation of an

executable objet program, called average.exe. If the compilation has

not been successful, it would not have been possible to proceed

with the link step. The programmer must then find the source of

error, re-enter the editor, and correct the original source program

so that it can again be compiled. To exceute the final object program,

simply type the program name e.g., average.out.

After this the following interactive dialog will be generated:

Please enter a value for marks m1: 50

Please enter a value for marks m2: 50

The final value (avg) is : 50

C interpreters translate a source program into object code on a line

by line basis and then execute the newly generated object code

directly. Thus the generation and execution of object code occurs

simultaneously and there is no link step. Successful compilation,

linking and execution of a C program often requires several attempts

because of the presence of errors that are generally present in a

new program.

208 :: Computer Applications

Programming errors often remain undetected until an attempt is

made to compile or execute the program. Some particular common

errors of this type are improperly declared variables, a reference to

an undeclared variable or incorrect punctuation. Such errors are

referred to as syntactic or grammatical errors. Most C compilers will

generate diagnostic messages when syntactic errors have been de-

tected during the compilation process. Let us consider an example,

which contains several syntactic errors.

include < stdio.h>

main

{

 float m1, m2, avg ;

/ * read input data * /

printf (“please enter a value for marks m1 :\n”);

scanf (“%f”, m1);

printf (“please enter a value for marks m2;);

scanf(“%f”, & m2);

avg = m1+m2 / 2 ;

/ * write output * /

printf ((“\n the final value (avg) is: %f ”, avg);

After compiling, the errors are as follows:

1. The include statements does not begin with a # sign, main does

not include a pair of parentheses.

2. The first scanf statement does not have an ampersand (&) pre-

ceding the argument.

3. The 2nd printf statement does not have a closing quotation mark.

4. The program does not end with a closing brace }

These errors are of general type, in the form of C compiler the

messages are as follows:

Average.C(2): errors 54: expected ‘(‘ to follow ‘include’

Average.C(7): errors 61: syntax error: identifier ‘scanf’

Average.C(8): errors 61: syntax error: identifier ‘printf’

Average.C(13): fatal error: unexpected EOF

The error message consists of the file name, followed by the line

A Complete C Program :: 209

number where an error has been detected. This information is fol-

lowed by a numbered reference to an error type, which is then fol-

lowed by a very brief message. Another common type of error is the

execution error. Execution errors occur during program execution

after a successful compilation e.g. some common execution errors

are the generation of an excessively large numerical quantity, divi-

sion by zero, or an attempt to compute the logarithm or the square

root of a negative number. Diagnostic messages will often be gener-

ated in this type of situation, making it easy to identify and correct

the errors. These diagnostics are sometimes called execution diag-

nostics, to distinguish them from the compilation diagnostics.

Interpreters operate differently than compilers. Interpreters can de-

tect both compilation-type errors and execution-type errors line by

line, approximately at the same time. When an error is detected

during the interpretation process, the interpreter will stop and issue

an error message, indicating which line was being processed when

the error was detected. But interpreters are generally much slower

than compilers while executing a program. Interpreters are there-

fore less suitable for running debugged programs.

INTEXT QUESTIONS

1. Define “top-down” programming?

2. Why are some statement indented within a C program?

3. What is the extension of C program file?

4. What is a syntactic error?

13.5 DETECTION AND CORRECTION OF ERRORS

Syntactic errors and execution errors usually result in the genera-

tion of error messages when compiling or executing a program. Error

of this type are usually quite easy to find and correct. There are

some logical errors that can be very difficult to detect. Since the

output resulting from a logically incorrect program may appear to

be error free. Logical errors are often hard to find, so in order to find

and correct errors of this type is known as logical debugging.

To detect errors test a new program with data that will give a known

answer. If the correct results are not obtained then the program

obviously contains errors. Even if the correct results are obtained,

210 :: Computer Applications

however you cannot be sure that the program is error free, since

some errors cause incorrect result only under certain circumstances.

Therefore a new program should receive thorough testing before it

is considered to be debugged.

Once it has been established that a program contains a logical er-

ror, some ingenuity may be required to find the error. Error detec-

tion should always begin with a thorough review of each logical group

of statements within the program. If the error cannot be found, it

sometimes helps to set the program aside for a while. If an error

cannot be located simply by inspection, the program should be modi-

fied to print out certain intermediate results and then be rerun.

This technique is referred to as tracing. The source of error will

often become evident once these intermediate calculations have been

carefully examined. The greater the amount of intermediate output,

the more likely the chances of pointing the source of errors.

Sometimes an error simply cannot be located.

Some C compilers include a debugger, which is a special program

that facilitates the detection of errors in C programs. In particular a

debugger allows the execution of a source program to be suspended

at designated places, called break points, revealing the values

assigned to the program variables and array elements at the time

execution stops. Some debuggers also allow a program to execute

continuously until some specified error condition has occurred. By

examining the values assigned to the variables at the break points,

it is easier to determine when and where an error originates.

INTEXT QUESTIONS

5. What is logical debugging?

6. Define tracing.

7. What is a debugger?

13.6 WHAT YOU HAVE LEARNT

In this lesson you learnt how to prepare a complete C program,

what files should be included in a C program. You are now aware of

the fact that how to compile and execute the C program after writing

it through some editor. At last logical and syntactical errors and

technique to detect and correct them are also discussed for the

benefit of the learners.

A Complete C Program :: 211

13.7 TERMINAL QUESTIONS

1. Explain the advantages of “top-down” programming.

2. Define “bottom-up” programming.

3. What is the difference between a line-oriented editor and a char-

acter oriented editor?

4. What is the difference between compilation and execution of a

C program?

5. Describe the concept of linking.

6. What are diagnostic message?

13.8 KEY TO INTEXT QUESTIONS

1. When the overall program strategy has been clearly established,

then the syntactic details of the language can be considered.

Such an approach is often referred to as “top-down” program-

ming.

2. The use of indentation is closely related to the sequencing of

groups of statements within a program. Indentation explains

the subordinate nature of individual statements within a group.

3. ‘C’

4. If some variables are improperly declared, a reference to an un-

declared variable or incorrect punctuation then such errors are

referred to as syntactical errors.

5. To find and correct errors of logical type is known as logical

debugging.

6. If an error cannot be located simply by inspection, the program

should be modified to print out certain intermediate results

and then be rerun. This is known as tracing.

7. Debugger is a special program that facilitates the detection of

errors in other C programs. It allows the execution of a source

program to be suspended at designated places, called break

point.

