
14

MAKING DECISIONS IN “C”

14.1 INTRODUCTION

So far we have seen that in C programs the instructions are executed

in the same order in which they appear in the program. Each

instruction is executed once and once only. Programs do not include

any logical control structures. Most programs, however, require that

a group of instructions be executed repeatedly, until some logical

condition has been satisfied. This is known as looping. Most of the

programs require that a logical test be carried out at some particular

point within the program. An action will then be carried out whose

exact nature depends upon the outcome of the logical test. This is

known as conditional execution.

14.2 OBJECTIVES

After going through this lesson you would be able to

l define 'while' statement, for statement and nested loops

l explain switch statement and goto statement

l define comma operator

14.3 WHILE STATEMENT

The while statement is used to carry out looping operations. The

general form of the statement is

Making Decisions in ‘‘C’’ :: 213

while (expression) statement

The loop operates in the following fashion:

The value of the test expression enclosed in parentheses is evalu-

ated. If the result is true, then the program statement (the body of

the loop) is executed. The statement may be a compound state-

ment. Then the test expression, which may be just as complex as

any of those found in if statement is evaluated again. If it is again

true, the statement is executed once more. This process continues

until the test expression becomes false. At that point, the loop is

terminated immediately, and program execution continues with the

statement (if any) following the while loop. If there are no more

statements, the program terminates.

Let us consider an example, which prints the five lines. Each line is

numbered by printing out the value of x each time around the loop.

/ * A test program for while loop */

include<stdio.h>

main()

{

int x=1;

while(x<6)

{

print(“This is line number %d of test program\n”,x);

x++;

}

}

The variable x is assigned a value of 1. The while loop displays the

line number of test program by incrementing the value of x by one

each time until the value of x is less than 6. Thus the loop will be

repeated 5 times, resulting in 5 consecutive lines of output. Thus,

when the program is run, the following output will be generated.

This is line number 1 of test program.

This is line number 2 of test program.

This is line number 3 of test program.

This is line number 4 of test program.

This is line number 5 of test program.

214 :: Computer Applications

This program can be written more concisely as

#include <stdio.h>

main()

 {

int x=1;

while (x<6)

printf(“This is line number %d of test program\n”;x++);

 }

When executed, this program will generate the same output as the

first program.

All variables used in the test expression of the while statement must

be initialized at some point before the while loop is reached. In

addition, the body of the loop must do something to change the

value of the variable used in the expression being tested. Otherwise

the condition would remain true and the loop would never terminate.

This situation, known as an infinite loop, is illustrated next.

while(x<6)

printf(“Something is wrong in this loop\n”);

The loop is infinite because the value of x is never change. If the test

expression starts out being true, it remains true forever. In the pre-

vious program, the value of x determines how many times the loop

executes. Therefore, the second statement in the body of the loop

(x++;) serves to increment x by 1. Since x starts out with a value of 1

and is incremented by 1, at some point it must become equal to 6.

Then the condition in the while loop becomes false and the loop is

terminated.

If x were initialized to a value of 6, the condition in the while loop

becomes false to begin with , and the body of the loop would not be

executed at all. It is clear, then, that the while statement employs a

loop pre-test. The loop condition is tested before each iteration, and

therefore before the loop is entered at all. If the condition initially

fails, the loop is skipped entirely.

If the test expression involves two variables and joined with ‘and’ or

‘OR’ operator

#include <stdio.h>

Making Decisions in ‘‘C’’ :: 215

main()

{

int x=1;

int a=4;

while (x<6 && a>3)

{

printf(“ This is line number %d of test program \n”,x);

x++;

 }

}

The loop executes only while x is less than 6 and a is greater than 3.

If at least one of these conditions becomes false, the loop termi-

nates. If at least one of the conditions is false when the loop is first

encountered, the loop is skipped entirely.

The value of a is not changed in the loop, but the value of x is

incremented in a way that will make the loop terminate eventually.

If the value of a is less than or equal to 3, then the initial test fails

and the while loop is skipped entirely.

There is another way to use while loop, instead of incrementing the

value of variables inside the loop, you can also decrement it. For

example, if you want to print the line number of test program in

reverse order then test expression changes and the program is as

follows:

#include <stdio.h>

main()

{

int x = 0

printf(“This is line number of test program in reverse

order”);

while(x>=0)

{

printf(“%d\n”,x);

x - - ;

 }

 }

216 :: Computer Applications

There is an option for test expression in while loop, instead of giving

some constant value to test variable you can even given it some

variable also. The value of this variable can be input from the user

interactively e.g. if the user wants to calculate the average of num-

bers, but ‘how many numbers?’ this number can be input from the

user itself and then this variable can be used in test expression.

Let us consider an example.

#include <stdio.h>

main()

{

int number, n=1;

float x, average, sum=/0;

printf(“How many number ?”);

scanf(“%d”, & number);

while(n<=number)

{

scanf(“%f”, &x);

sum=sum+x;

++n;

}

average=sum/number;

printf(“\n The average is %f \n”, average);

}

The output of this program is as follows:

How may number? 6

1.

2.

3.

4.

5.

6.

The average is 3.500000

Making Decisions in ‘‘C’’ :: 217

do......while loop

The do… while loop differs from its counter part, the while loop in

that it makes what is called a loop post-test. That is the condition is

not tested until the body of the loop has been executed once. In the

while loop, by contrast, the test is made on entry to the loop rather

than at the end. The effect is that even if the condition is false when

the do-while loop is first encountered, the body of the loop is ex-

ecuted at least once. If the condition is false after the first iteration,

the loop terminates. If the first iteration has made the condition

true, however the loop continues.

The general form of the do….while loop is as follows:

do

Statement;

while (test expression);

The fact that the while clause is located after the statement reflects

the fact that the test is made after the statement is executed.

If the body of the loop is a single statement, it must be terminated

with a semicolon. For example:

do

a=a+10;

while (a<b);

This semicolon marks the end of the inner statement only not of the

entire loop construct. In every situation that requires a loop, either

one of these two loops can be used. Let us consider an example:

#include <stdio.h>

main()

{

int numbers, n=1;

float x,average ,sum=0;

printf(“How many number ?”);

scanf(“%d”, &numbers);

do

{

scanf(“%f; &x);

sum=sum+x;

218 :: Computer Applications

++n;

}

while (n<=numbers);

average=sum/numbers;

printf(“\n The average is %f\n”, average);

}

The output of this program is same as that with while loop.

INTEXT QUESTIONS

1. What happens if the condition in a while loop is initially false?

2. What is the minimum number of times the body of a do… while

loop is executed?

3. What is the essential difference between a while and a do….

While loop?

4. Define syntax for do…. While loop?

14.4 FOR STATEMENT

The for statement is the most commonly used looping statement in

'C'. This statement includes an expression that specifies an initial

value for an index, another expression that determines whether or

not the loop is continued and the third expression that allows the

index to be modified at the end of each pass.

The general form of the for statement is

for (expression1; expression2; expression3) statement

Expression1 is the initialization expression, usually an assignment,

which is performed once before the loop actually begins execution.

Expression 2 is the test expression, exactly like the one used in the

while loop, which is evaluated before each iteration of the loop and

which, determines whether the loop should continue or be termi-

nated. Finally, expression 3 is the modifier statement, which changes

the value of the variable used in the test. This expression is ex-

ecuted at the end of each iteration, after the body of the loop is

executed. Statement is the body of the loop, which may as usual be

compound. The three loops expressions are separated by two semi-

colons. No semicolon should be placed after expression 3.

Making Decisions in ‘‘C’’ :: 219

The first expression of the for loop can be omitted if the variable is

initialized outside the loop. If one or more expressions are omitted

from the for loop, the two semicolons still must appear, even if they

are not preceded or followed by anything. Let us understand the

concept of for loop with the help of an example:

#include <stdio.h>

main()

{

int x;

for(x=1; x<=10; x ++)

printf(“This is line number %d of test program\n”,x);

}

The output for this program is as follows:

This is line number 1 of test program

This is line number 2 of test program

This is line number 3 of test program

This is line number 4 of test program

This is line number 5 of test program

This is line number 6 of test program

This is line number 7 of test program

This is line number 8 of test program

This is line number 9 of test program

This is line number 10 of test program

In order to print the tenth line, the test expression must use the <=

relational operators. If < alone were used, the loop would print only

nine lines.

Let us consider one more program to print first five even numbers

through use of for loop.

#include <stdio.h>

main()

{

int i;

for(i=2; i<=10; i=i+2)

220 :: Computer Applications

printf(“%d\n”, i);

}

The output of this program is as follows:

2

4

6

8

10

In the for loop, if the second expression is omitted, however it will be

assumed to have a permanent value of 1 (true) thus the loop will

continue indefinitely unless it is terminated by some other means,

such as a break or a return statement.

INTEXT QUESTIONS

5. Which is the better loop to use, the for loop or the while loop?

6. What is a special advantage of the for loop?

7. What separates the three expressions of a for statement?

8. How does the for loop operate?

14.5 NESTED LOOPS

Loops can be nested or embedded one within another. The inner

and outer loops need not be generated by the same type of control

structure. It is essential, however that one loop be completely

embedded within the other there can be no overlap. Each loop must

be controlled by a different index. Let us consider an example of

nested for loops:

#include <stdio.h>

main()

{

int i,j,n,sum;

for(i=1;i<=5; i++)

{

printf(“\nEnter a positive number:”);

scanf(“%d”,&n);

Making Decisions in ‘‘C’’ :: 221

sum=0;

for(j=i; j<n; j++)

{

sum=sum+j;

printf(“\n The sum of the integers from 1 to %d

is:%d\n”, n,sum);

}

}

}

The output is as follows: -

Enter a positive number: 5

The sum of the integers from 1 to 5 is: 15

Enter a positive number: 10

The sum of the integers from 1 to 10 is: 55

Enter a positive number: 15

The sum of the integers from 1 to 15 is: 120

Enter a positive number: 20

The sum of the integers from 1 to 20 is: 210

Enter a positive number: 5

The sum of the integers from 1 to 25 is: 325

In this program firstly, outer for loop will be executed, if the expression

(test) is true, sum variable is initialized to zero every time and then

inner loop will be executed. Inner loop will be executed till the test

expression of inner loop satisfies. Then if the expression is false, the

pointer again goes to outer loop and then it will reexecute. For nested

loops any other loop structures could also have been selected.

14.6 IF…ELSE STATEMENT

C allows decisions to be made by evaluating a given expression as

true or false. Depending upon the result of the decision, program

execution proceeds in one direction or another. This is carried out

in ‘C’ by ‘if’ statement. The simplest form of the if statement is as

follows:

222 :: Computer Applications

if (expression)

Statement;

‘if’ statement will execute if the given expression is true. If the user

wants to add more than one statement then there must be pair of

curly braces after ‘if’.

if (expression)

{

statement;

statement;

}

Let us consider an example of if statement.

#include <stdio.h>

main()

{

char grade;

printf(“Enter a character value for grade:”);

scanf(“%c”, & grade);

if(grade = = ‘A’)

printf(“The grade is excellent \n”);

printf(“Thanks for using this program\n”);

}

The output is as follows:

Enter a character value for grade: A

The grade is excellent

thanks for using this program

If we re-run the program with different value for grade than the

output is

Enter a character value for grade: C

Thanks for using this program

In the second case, the value for grade is ‘C’ other than ‘A’ which is

in test expression of if statement, thus the first printf statement will

not execute.

In the previous program only the general message is printed if the

Making Decisions in ‘‘C’’ :: 223

user selects a grade other than ‘A’. If the user wants to display

other message when enter a grade other than ‘A’, you have to add

the else clause of if statement. The general form of if..else is as

follows.

if (statement)

Statement 1;

else

Statement 1;

Both if and else clause are terminated by semicolons. Let us consider

an example of if…else statement.

#include <stdio.h>

main()

{

char grade;

printf(“Enter a character value for grade:”);

scanf(“%c”, &grade);

if(grade= =’A’)

printf(“grade is excellent \n”);

else

printf(“grade is other than excellent\n");

}

The user can use compound statements both in if and else state-

ments. The first printf is executed if and only if grade is equal to ‘A’,

if grade is not equal to ‘A’, the first printf is ignored, and the second

printf, the one following the word else, is executed.

A clause of the if statement may itself contain another if statement,

this construct known as nesting of if statements. Let us consider an

example nested if..else statement:

#include <stdio.h>

main()

{

int year;

printf(“Enter a year to check for leap year”);

scanf(“%d”, & year);

if (year %4= = Ο),

224 :: Computer Applications

if(year %100 != 0)

printf(“%d is a leap year:\n”, year);

else

if(year %400 = =)

printf(“%d is a leap year \n”,year);

else

printf(“%d is not a leap year \n”, year);

else

printf (“%d is not a leap year\n”, year);

}

It is very important to be sure which else clause goes with which if

clause. The rule is that each else matches the nearest if preceding it

which has not already been matched by an else. Addition of braces

prevents any association between the if statement within the braces

and the else clause outside them. Even where braces are not neces-

sary, they may still be used to promote clarity.

INTEXT QUESTIONS

9. In an if statement, if two separate statements are to be executed

when the comparison is true, what must be done with them?

10. What is the function of the else clause in an if statement?

14.7 SWITCH STATEMENT

The switch statement causes a particular group of statements to be

chosen from several available groups. The selection is based upon

the current value of on expression that is included within the switch

statement. The general form of the switch statement is

switch (expression) statement

Where expression results in an integer value. Expression may also

be of type char, since individual characters have equivalent integer

values. The embedded statement is generally a compound state-

ment that specifies alternate courses of action. Each alternative is

expressed as a group of one or more individual statements within

the overall embedded statement. For each alternative, the first state-

ment within the group must be preceded by one or more case la-

bels. The case labels identify the different groups of statements and

Making Decisions in ‘‘C’’ :: 225

distinguish them from one another. The case labels must therefore

be unique within a given switch statement.

Thus, the switch statement is in effect an extension of the familiar

if…else statement. Rather than permitting maximum of only two

branches, the switch statement permits virtually any number of

branches.

In general terms, each group of statements is written as

case expression1;

case expression2;

:

:

case expression m:

Statement 1

Statement 2

:

Statement n

Where expression 1, expression 2…. Expression n represent con-

stant, integer valued expressions. Each individual statement follow-

ing the case labels may be either simple or complex. When the

switch statement is executed, the expression is evaluated and control

is transferred directly to the group of statements whose case-label

value matches the value of the expression. If none of the case-label

value matches the value of the expression, then none of the groups

within the switch statement will be selected. In this case control is

transferred directly to the statement that follows the switch state-

ment.

Let us consider an example of switch statement:

#include <stdio.h>

main()

{

char vowel;

printf(“Enter a character”);

scanf(“%c”,&vowel);

switch(vowel)

{

case’a’

226 :: Computer Applications

case’A’:

printf(“vowel”);

break;

case ‘e’ :

case ‘E’:

printf(“vowel”);

break;

case ‘i’ :

case ‘I’ : printf(“vowel”); break;

case’ o’ :

case ‘O’ :

printf(“vowel”);

break;

case ‘u’ :

case ‘U’ :

printf(“vowel”);

}

 }

One of the labeled groups of statements within the switch state-

ment may be labeled default. This group will be selected if none of

the case labels matches the value of the expression. The default

group may appear anywhere within the switch statement. If none of

the case labels matches the value of the expression and default

group is not present, then the switch statement will take no action.

#include <stdio.h>

main()

{

char vowel;

printf(“Enter a character”);

scanf(“%c”, & vowel);

switch(vowel)

{

case ‘a’:

case ‘A’:

printf(“vowel”);

Making Decisions in ‘‘C’’ :: 227

break;

case’e’:

case ‘E’:

printf(“vowel”);

break;

case ‘i’ :

case ‘I’:

printf(“vowel”);

break

case’o’:

case ‘O’:

printf(“vowel”);

break;

case’u’

‘u’:

printf(“vowel”);

break;

default:

printf(“Not a vowel”);

}

}

The default label can be placed anywhere within the body of the

switch statement; it need not be the last label. In fact, the labels of a

switch statement can appear in any order, depending on the logic of

the program. It is desirable for several different values of the switch

variable to cause execution of the same set of statements. This can

be accomplished by including several labels in succession with no

intervening statements.

14.8 THE BREAK STATEMENT

The break statement is used to force fully terminate loops or to exit

from a switch. It can be used within a while, a do-while, for or a

switch statement. The format is simple as

break;

without any embedded expression or statements. The break state-

ment causes a transfer of control out of the entire switch statement,

to the first statement following the switch statement.

228 :: Computer Applications

If a break statement is included in a while, in do while or in for loop,

then control will immediately be transferred out of the loop when

the break statement is encountered. Thus provides a convenient

way to terminate the loop if an error or other irregular condition is

detected. Let us consider a program segment of break statement in

while loop.

#include <stdio.h>

main()

{

int x, sum=Ο;

printf(“Enter any number”);

scanf(“%d” &x);

while(x<=50)

{

if (x<zero)

{

printf(“error value because of negative value”);

break;

}

scanf(“%d”, &x);

}

The continue statement is used to bypass the remainder of the cur-

rent pass through a loop. The loop does not terminate when a con-

tinue statement is encountered, instead the remaining loop state-

ments are skipped and the computation proceeds directly to the

next pass through the loop. It can also be included within a while,

do while or a for statement as like break statement. It is also written

simply as

continue;

without any embedded statement or expression.

14.9 THE COMMA OPERATOR

Comma operator is used primarily in conjunction with the for state-

ment. This operator permits two different expressions to appear in

situation where only one expression would ordinarily be used.

Making Decisions in ‘‘C’’ :: 229

For example:

for (expression 1a, expression 1b; expression 2; expression 3)

statement.

where expression 1a and expression 1b are the two expressions,

separated by comma operator, where only one expression would

normally appear.

Let us consider an example:

#include<stdio.h>

main()

{

int i,j,n;

printf(“Enter number for a table”);

scanf(“%d”, &n);

printf(“\n”);

for(i=0, j=n; i<n; i++, j– –)

printf(“%3d+%3d= %3d\n”, i,j,n);

}

The output is as follows:

Enter number for a table 20

0+20=20

1+19=20

2+18=20

3+17=20

4+16=20

5+15=20

6+14=20

7+13=20

8+12=20

7+13=20

8+12=20

9+11=20

230 :: Computer Applications

10+10=20

11+9=20

12+8=20

13+7=20

14+6=20

15+5=20

16+4=20

17+3=20

18+2=20

19+1=20

20+0=20

The comma operator has the lowest precedence. Thus, the comma

operator falls within its own unique precedence group, beneath the

precedence group containing the various assignment operators. Its

associatively is left-to-right

14.10 THE GOTO STATEMENT

The goto statement is used to alter the normal sequence of program

execution by transferring control to some other part of the program.

It is written as

goto label;

Where label is an identifier used to label the target statement to

which control will be transferred. Control may be transferred to any

other statement within the program. The target statement must be

labeled, and the label must be followed by a colon. Thus the target

statement will appear as

Label : statement

No two statements cannot have the same label

Goto statements has many advantages like branching around state-

ments or groups of statements under certain conditions, jumping to

the end of a loop under certain conditions, thus bypassing the re-

mainder of the loop during the current pass, jumping completely

out of a loop under certain conditions, thus terminating the execu-

tion of a loop.

Making Decisions in ‘‘C’’ :: 231

14.11 WHAT YOU HAVE LEARNT

In this lesson, you have learnt about different types of loops like for,

do..while, while. You are now familiar with if-else statement and

switch statement. You are now also familiar with comma operators,

break and continue statement and goto statement. You can very

well use all of them in a ‘C’ program to make a program interactive

and user friendly.

14.12 TERMINAL QUESTIONS

1. What is meant by looping? Describe two different forms of loop-

ing.

2. What is the purpose of while statement?

3. How is the execution of a while loop terminated?

4. How many times will a for loop be executed, what is the purpose

of the index in a for statement?

5. What is the purpose of the switch statement?

6. Compare the use of the switch statement with the use of nested

if else statement?

7. What is the use of break and continue?

8. What is the purpose of goto statement. Explain their usage in

the program.

14.13 KEY TO INTEXT QUESTIONS

1. The while loop is skipped over

2. One

3. A while loop performs its test before the body of the loop is

executed, whereas a do..loop makes the test after the body is

executed.

4. do

Statement;

while (test expression);

5. It depends on the nature of the problem to be solved, and upon

the preference of the programmer

232 :: Computer Applications

6. The initialization, testing and modifier expressions of the loop

all are specified within a single set of parentheses.

7. Semicolons

8. The first expression is executed once. Then the second expres-

sion is tested, if it is true, the body of the loop is executed. Then

the third expression is executed. Again, second expression is

evaluated, till the second expression is true, the body of the

loop is executed, followed by the third expression.

9. They must be combined into a compound statement, using the

curly braces { and }.

10. If present, it is followed by a statement that is executed only if

the condition being tested proves to be false.

