
15

FUNCTIONS IN ‘C’

15.1 INTRODUCTION

In the earlier lessons we have already seen that C supports the use

of library functions, which are used to carry out a number of com-

monly used operations or calculations. C also allows programmers

to define their own functions for carrying out various individual tasks.

In this lesson we will cover the creation and utilization of such user-

defined functions.

15.2 OBJECTIVES

After going through this lesson you will be able to

l explain of function

l describe access to function

l define parameters data types specification

l explain function prototype and recursion

l define storage classes – automatic, external, static variables

15.3 MODULAR APPROACH

The use of user-defined functions allows a large program to be broken

234 :: Computer Applications

down into a number of smaller, self-contained components, each of

which has some unique, identifiable purpose. Thus a C program

can be modularized through the intelligent use of such functions.

There are several advantages to this modular approach to program

development. For example many programs require a particular group

of instructions to be accessed repeatedly from several different places

within a program. The repeated instruction can be placed within a

single function, which can then be accessed whenever it is needed.

Moreover, a different set of data can be transferred to the function

each time it is accessed. Thus, the use of a function avoids the need

for redundant (repeating) programming of the same instructions.

The decomposition of a program into individual program modules is

generally considered to be an important part of good programming.

15.4 DEFINING A FUNCTION

The question arises what is a function? So, function is a self-con-

tained program segment that carries out some specific well-defined

task. Every C program consists of one or more functions. The most

important function is main. Program execution will always begin by

carrying out the instruction in main. The definitions of functions

may appear in any order in a program file because they are inde-

pendent of one another. A function can be executed from anywhere

within a program. Once the function has been executed, control will

be returned to the point from which the function was accessed.

Functions contains special identifiers called parameters or argu-

ments through which information is passed to the function and

from functions information is returned via the return statement. It

is not necessary that every function must return information, there

are some functions also which do not return any information for

example the system defined function printf.

Before using any function it must be defined in the program. Func-

tion definition has three principal components: the first line, the

parameter declarations and the body of the functions.

The first line of a function definition contains the data type of the

information return by the function, followed by function name, and

a set of arguments or parameters, separated by commas and enclosed

in parentheses. The set of arguments may be skipped over. The data

type can be omitted if the function returns an integer or a charac-

ter. An empty pair of parentheses must follow the function name if

the function definition does not include any argument or param-

eters.

Functions in ‘C’ :: 235

The general term of first line of functions can be written as:

data-type function-name (formal argument 1, formal argument

2…formal argument n)

The formal arguments allow information to be transferred from the

calling portion of the program to the function. They are also known

as parameters or formal parameters. These formal arguments are

called actual parameters when they are used in function reference.

The names of actual parameters and formal parameters may be either

same or different but their data type should be same. All formal

arguments must be declared after the definition of function. The

remaining portion of the function definition is a compound state-

ment that defines the action to be taken by the function. This com-

pound statement is sometimes referred to as the body of the func-

tion. This compound statement can contain expression statements,

other compound statements, control statements etc. Information is

returned from the function to the calling portion of the program via

the return statement. The return statement also causes control to

be returned to the point from which the function was accessed.

In general terms, the return statement is written as

return expression;

The value of the expression is returned to the calling portion of the

program. The return statement can be written without the expres-

sion. Without the expression, return statement simply causes con-

trol to revert back to the calling portion of the program without any

information transfer. The point to be noted here is that only one

expression can be included in the return statement. Thus, a function

can return only one value to the calling portion of the program via

return. But a function definition can include multiple return state-

ments, each containing a different expression. Functions that in-

clude multiple branches often require multiple returns.

It is not necessary to include a return statement altogether in a

program. If a function reaches the end of the block without encoun-

tering a return statement, control simply reverts back to the calling

portion of the program without returning any information.

Let us consider an example of function without returning any infor-

mation.

236 :: Computer Applications

#include <stdio.h>

main()

{

int x,y;

maxi(int, int); /*function declaration*/

printf(“Enter two integer values”);

scanf(“%d %d”’ &x,&y);

maxi(x,y); /*call to function*/

}

maxi(x,y) /*function definition*/

int x,y;

{

int z;

z=(x>=y)?x:y;

print(“\n\n Maximum value %d”,z);

return;

}

This ‘maxi’ function do not return any value to the calling program,

it simply returns the control to the calling programs, so if it is even

not present, then also program will work efficiently.

Most C compilers permit the keyword void to appear as a type speci-

fies when defining a function that does not return anything. So the

function definition will look like this if void is add to it

void maxi (int, int);

INTEXT QUESTIONS

1. Distinguish between a user-defined and one supplied, functions

in the C library.

2. In what sense does the user-defined function feature of 'C' ex-

tends its repertoire?

3. How many values can a function return?

15.5 ACCESSEMENT OF A FUNCTION

A function can be accessed by specifying its name, followed by a list

Body of the

function

maxi

Functions in ‘C’ :: 237

of parameters or arguments enclosed in parentheses and separated

by commas. If the function call does not require any arguments an

empty pair of parentheses must follow the function’s name. The

function call may appear by itself or it may be one of the operands

within a more complex expression. The parameters in the body of

the functions are called actual arguments as stated earlier, they

may be expressed as constants, single variables or more complex

expressions.

Let us consider another example of function.

#include <stdio.h>

main()

{

int a,b,c;

printf(“Enter two numbers”);

scanf(“%d%d”, &a,&b);

c=sum_v(a,b,);

printf(“\n The sum of two variables is %d\n,”,c);

}

sum_v(a,b)

int a,b

{

int d;

d=a+b;

return d;

}

This program returns the sum of two variables a and b to the calling

program from where sum_v is executing. The sum is present in the

variable c through the ‘return d’ statement. There may be several

different calls to the same function from various places within a

program. The actual parameters may differ from one function call to

another. Within each function call, the actual arguments must cor-

respond to the formal arguments in the function definition, i.e. the

number of actual arguments must be same as the number of formal

arguments and each actual argument must be of the same data

type as its corresponding formal argument.

238 :: Computer Applications

Let us consider an example.

#include <stdio.h>

main()

{

int a,b,c,d;

printf(“\n Enter value of a=”);

scanf(“%d”, &a);

printf(“\n Enter value of b=”);

scanf(“%d”,&b);

printf(“\n Enter value of c=”);

scanf(“%d”, &c);

d=maxi(a,b);

printf(“\n maximum =%d”, maxi(c,d));

}

maxi(x,y);

int x,y

{

int z;

z=(x>=y)? x:y;

return z;

}

The function maxi is accessed from two different places in main. In

the first call actual arguments are a, b and in the second call c, d are

the actual arguments.

If a function returns a non-integer quantity and the portion of the

program containing the function call precedes the function defini-

tion, then there must be a function declaration in the calling por-

tion of the program. The function declaration effectively informs the

compiler that a function will be accessed before it is defined. A func-

tion declaration can be written as.

datatype function name ();

Function calls can span several levels within a program; function A

can call function B so on.

Functions in ‘C’ :: 239

15.6 PASSING ARGUMENT TO A FUNCTION

Arguments can be passed to a function by two methods, they are

called passing by value and passing by reference. When a single

value is passed to a function via an actual argument, the value of the

actual argument is copied into the function. Therefore, the value of

the corresponding formal argument can be altered within the func-

tion, but the value of the actual argument within the calling routine

will not change. This procedure for passing the value of an argu-

ment to a function is known as passing by value.

Let us consider an example

#include <stdio.h>

main()

{

int x=3;

printf(“\n x=%d(from main, before calling the

function”),x);

change(x);

printf(“\n\nx=%d(from main, after calling the

function)”,x);

}

change(x)

int x;

{

x=x+3;

printf(“\nx=%d(from the function, after being

modified)”,x);

return;

}

The original value of x (i.e. x=3) is displayed when main begins ex-

ecution. This value is then passed to the function change, where it

is sum up by 3 and the new value displayed. This new value is the

altered value of the formal argument that is displayed within the

function. Finally, the value of x within main is again displayed, after

control is transferred back to main from change.

x=3 (from main, before calling the function)

240 :: Computer Applications

x=6 (from the function, after being modified)

x=3 (from main, after calling the function)

Passing an argument by value allows a single-valued actual argu-

ment to be written as an expression rather than being restricted to

a single variable. But it prevents information from being transferred

back to the calling portion of the program via arguments. Thus,

passing by value is restricted to a one-way transfer of information.

Arrays are passed differently than single-valued entities. If an array

name is specified as an actual argument, the individual array ele-

ments are not copied to the function. Instead the location of the

array is passed to the function. If an element of the array is ac-

cessed within the function, the access will refer to the location of

that array element relative to the location of the first element. Thus,

any alteration to an array element within the function will carry

over to the calling routine.

15.7 SPECIFICATION OF DATA TYPES OF ARGUMENTS

The calling portion of a program must contain a function declara-

tion if a function returns a non-integer value and the function call

precedes the function definition. Function declaration may be in-

cluded in the calling portion of a program even if it is not necessary.

It is possible to include the data types of the arguments within the

function declaration. The compiler will then convert the value of

each actual argument to the declared data type and then compare

each actual data type with its corresponding formal argument. Com-

pilation error will result if the data types do not agree. We had al-

ready been use, data types of the arguments within the function

declaration. When the argument data types are specified in a func-

tion declaration, the general form of the function declaration can be

written as

data-type function name (argument type1, argument type2, … ar-

gument type n);

Where data-type is the data type of the quantity returned by the

function, function name is the name of function, and argument

type/refer to the data types of the first argument and so on. Argument

data types can be omitted, even if situations require a function dec-

laration.

Most C compilers support the use of the keyword void in function

definitions, as a return data type indicating that the function does

Functions in ‘C’ :: 241

not return anything. Function declarations may also include void

for the same purpose. In addition, void may appear in an argument

list, in both function definitions and function declarations, to indicate

that a function does not require arguments.

15.8 FUNCTION PROTOTYPES AND RECURSION

Many C compilers permits each of the argument data types within a

function declaration to be followed by an argument name, that is

data-type function name (type1 argument 1, type 2 argument2…

type n argument n); Function declarations written in this form are

called function prototypes.

Function prototypes are desirable, however, because they further

facilitate error checking between the calls to a function and the

corresponding function definition. Some of the function prototypes

are given below:

int example (int, int); or int example (int a, int b);

void example 1(void); or void example 1(void);

void fun (char, long); or void fun (char c, long f);

The names of the arguments within the function declaration need

not be declared elsewhere in the program, since these are “dummy”

argument names recognized only within the declaration. “C” lan-

guage also permits the useful feature of ‘Recursion’.

Recursion is a process by which a function calls itself repeatedly,

until some specified condition has been satisfied. The process is

used for repetitive computations in which each action is stated in

terms of a precious result. In order to solve a problem recursively,

two conditions must be satisfied. The problem must be written in a

recursive form, and the problem statement must include a stopping

condition. The best example of recursion is calculation of factorial of

a integer quantity, in which the same procedure is repeating itself.

Let us consider the example of factorial:

#include <stdio.h>

main()

{

int number;

long int fact(int number);

242 :: Computer Applications

printf(“Enter number”);

scanf(“%d”, & number);

printf(“Factorial of number is % d\n”, fact(number));

}

long int fact(int number)

{

if(number <=1)

return(1);

 else

return(number *fact(number-1));

}

The point to be noted here is that the function ‘fact’ calls itself re-

cursively, with an actual argument (n-1) that decrease in value for

each successive call. The recursive calls terminate the value of the

actual argument becomes equal to 1.

When a recursive program is executed, the recursive function calls

are not executed immediately. Instead of it, they are placed on a

stack until the condition that terminates the recursion is encoun-

tered. The function calls are then executed in reverse order, as they

are popped off the stack.

The use of recursion is not necessarily the best way to approach a

problem, even though the problem definition may be recursive in

nature.

INTEXT QUESTIONS

4. Can a function be called from more than one place within a

program?

5. What is the purpose of the keyword void in a function declara-

tion?

6. When a function is accessed, must the names of the actual

arguments agree with the name of the arguments in the corre-

sponding function declaration?

7. What is recursion?

Functions in ‘C’ :: 243

15.9 STORAGE CLASSES – AUTOMATIC, EXTERNAL, STATIC

VARIABLES

There are four different storage-class specification in ‘C’, automatic,

external, static and register. They are identified as auto, extern,

static and register respectively.

Automatic variables are always declared within a function and are

local to the function in which they are declared, that is their scope

is confined to that function. Automatic variables defined in different

functions will therefore be independent of one another. The loca-

tion of the variable declarations within the program determine the

automatic storage class, the keyword auto is not required at the

beginning of each variable declaration.

These variables can be assigned initial value by including appropri-

ate expressions within the variable declarations. An automatic vari-

able does not retain its value once control is transferred out of its

defining function. It means any value assigned to an automatic vari-

able within a function will be lost once the function is exited. The

scope of an automatic variable can be smaller than an entire func-

tion. Automatic variables can be declared within a single compound

statement.

External variables are not confined to single functions. Their scope

extends from the point of definition through the remainder of the

program. External variable are recognized globally, that means they

are recognized throughout the program, they can be accessed from

any function that falls within their scope. They retain their assigned

values within their scope. Therefore, an external variable can be

assigned a value within one function and this value can be used

within another function. With the use of external variables one can

transfer the information between functions.

External variable definitions and external variable declarations are

not the same thing. An external variable definition is written in the

same manner as an ordinary variable declaration. The storage-class

specifier extern is not required in an external variable definition,

because these variables will be identified by the location of their

definition within the program. An external variable declaration must

begin with the storage class specifier extern. The name of the exter-

nal variable and its data type must agree with the corresponding

external variable definition that appears outside of the function.

The declaration of external variables cannot include the assignment

of initial values. External variables can be assigned initial values as

244 :: Computer Applications

a part of the variable definitions, but the initial values must be ex-

pressed as constants rather than as expression. These initial values

will be assigned only once, at the beginning of the program. If an

initial value is not included in the definition of an external variable,

the variable will automatically be assigned a value of zero.

Static variables are defined within individual functions and therefore

have a same scope as automatic variables, i.e. they are local to the

functions in which they are defined. Static variables retain their

values throughout the program. Thus, if a function is exited and re-

entered later, the static variables defined within that function will

retain their former values. Static variables are defined within a func-

tion in the same manner as automatic variables, but its declaration

must begin with the static storage class designation. They cannot

be accessed outside of their defining function. Initial values can be

included in static variable declarations. The initial value must be

expressed as constants, not expression, the initial values are as-

signed to their respective variables at the beginning of

program,execution. The variables retain these values throughout

the program, unless different values are assigned during the pro-

gram. This is all for storage classes auto, extern and static.

Let us consider and example of static variables:

static int a;

If the keyword static is replaced with the keyword auto, the variable

is declared to be of storage class auto. If a static local variable is

assigned a value the first time the function is called, that value is

still there when the function is called second time.

display_number()

{

static int number=2;

printf(“number=%d\n”, number);

number++;

}

When the first time display_number is called, it prints the value 2,

to which number is initialized. Then number is incremented to 3,

and terminates. The second time display_number is called, it prints

the value of 3. On the third call, the value printed is 4 and so on.

Point to be noted here is that the initialization is not performed

after the first call. An initialization used in a declaration occurs only

Functions in ‘C’ :: 245

once-when the variable is allocated. Since a static variable is allocated

only once, the initialization occurs only during the entire program,

no matter how many times the function is called. When the

display_number function in the example is called the second time,

the value found in the variable number is the value left there by the

previous call to the function.

15.10 WHAT YOU HAVE LEARNT

In this lesson you have learnt about functions, how to define and

declare functions, what are the functions different data types. You

are now able to execute function from different places of a program.

You are now familiar with useful feature of functions say recursion.

In this lesson we are also discussed different storage classes like

auto, extern and static.

15.11 TERMINAL QUESTIONS

1. What is meant by a function call?

2. What is the purpose of the return statement?

3. What are the three principal components of a function defini-

tion?

4. Can multiple expressions be included in a return statement?

Can multiple statements be included in a function?

5. How are argument data types specified in a function declara-

tion?

6. Name the four storage-class specifications in C?

7. What is the importance or use of a automatic variable?

8. Differentiate between external and static variable?

9. What is the scope of a static external variable?

10. Does static variables retain their values even after exiting the

function?

15.12 KEY TO INTEXT QUESTIONS

1. The statements of a user-defined function are written as part of

program itself, according to the programmer’s requirements.

2. A function may be designed to carry out some frequently used

task, and called upon when needed merely by specifying the

name of the function.

246 :: Computer Applications

3. One

4. Yes

5. It means the function does not return any value to the calling

program

6. It is not necessary

7. Recursion is a process by which a function calls itself repeat-

edly.

