
16

ARRAYS

16.1 INTRODUCTION

As we stated earlier that the variables are the entities in ‘C’ which

are used to hold data in memory. But the concept of variables does

not solve the indeterminate number of values is to be stored and

operated upon. In case of storing say 100 values, it is a very difficult

task to store 100 different variable names with their values. Arrays

are the solution to this problem. Arrays are nothing but a single

name to a whole group of similar data. The position in terms of

arrays is known as subscript. Each subscript must be expressed as

a non-negative integer.

 y[0] y[1] y[2] y[3]

The number of subscripts determines the dimension of the array.

16.2 OBJECTIVES

After going through this lesson you will be able in a position to

l define AN ARRAY

l process AN ARRAY

l pass ARRAYS TO FUNCTIONS

l process MULTIDEMNSIONAL ARRAYS AND STRINGS.

248 :: Computer Applications

16.3 DEFINING AN ARRAY

Arrays are defined in much the same manner as ordinary variables

except that each array name must be followed by a size specifica-

tion. For a one-dimensional array, the size is specified by a positive

integer expression enclosed in square brackets.

For example

Storage-class data-type array name[expression];

int a[10];

char text[100];

static char text[100];

The array’s size can be defined in terms of a symbolic constant rather

than a fixed integer quantity.

The following example reads a one-dimensional character array. and

convert it to uppercase and then print it.

include <stdio.h>

main()

{

char str[20];

int i;

printf(“Enter any line of 9 characters”);

scanf(“\s”, str);

scan(“%s”, str);

for(i=0;, i<20; ++i)

{

putchar(toupper(str[i]));

}

}

Automatic arrays, unlike automatic variables, cannot be initialized.

But the definitions of external and static arrays can include the

assignment of initial values if required. The initial values must appear

in the order in which they will be assigned to the individual array

elements, enclosed in braces and separated by commas. The general

Arrays :: 249

form is

storage class data-type array. name[expression]={value1, value2 - - -

, value n};

For example, char school[4] ={‘O’,’P’,’E’,’N’};

int marks[10]={1,2,3,4,5,6,7,8,9,10};

static float y[3]={o,0.3,0.2};

All individual array elements that are not assigned explicit initial

values will automatically be set to zero. This includes the remaining

elements of an array in which certain element have been assigned

non zero values.

The array size need not be specified explicitly when initial values

are included as a part of an array definition. With a numerical array,

the array size will automatically be set equal to the number of initial

values included within the definition.

For example

 int array[]={4,8,3,7,5};

Since the square brackets following the array name are empty, the

compiler determines how many elements to allocate for the array

by counting the number. of values within the curly braces. This

approach can help to avoid errors. If the dimension is specified

explicitly, and the curly braces contain more initialization values

than are needed, a syntax error is flagged by the compiler.

The case of strings are different. The array size specification in this

case is usually omitted. The proper array size will be assigned auto-

matically. This will include a provision for the null character.

If a program requires a one-dimensional array declaration the

declaration is written in the same manner as the array definition

with the following exception.

1. The square brackets may be empty, since the array size will

have been specified as a part of the array definition. Array dec-

laration are customarily written in this form.

2. Initial values cannot be included in the declaration. Following

are the examples of defining an External array.

250 :: Computer Applications

int a[]= { 1,2,0}; /*external array definition */

char text []=”open”; /*external array definition */

extern void dummy(void); /* external function declaration */

16.4 PROCESSING AN ARRAY

Single operations involving entire array are not permitted in ‘C’. If

two arrays are same in every respect then different operations must

be carried out on an element by element basis. This usually accom-

plished within a loop, where each pass through the loop is used to

process one array element. The number of passes through the loop

will therefore equal the number of array elements to be processed.

Let us consider an example of processing an array.

#include <stdio.h>

main()

{

int number,i;

float avg, sum=0;

float arr[20];

printf(“How many numbers will be averaged”);

scanf(“%d”, & number);

printf(“\n”);

for (i=0; i<number; ++i);

printf (“Enter number”)

{

scanf(“%f”, & arr[i]);

sum +=arr[i];

}

avg= sum/number;

printf(“\n The average is %f\n”, avg);

}

Here, each value gets entered in the array “arr” one-by-one so arr

[0] element will fill first then arr[1] - - and so on.

16.5 PASSING ARRAYS TO FUNCTIONS

An array name can be used as an argument to a function, thus

permitting the entire array to be passed to the function.

Arrays :: 251

To pass an array to a function, the array name must appear by

itself, without brackets or subscripts, as an actual argument or

parameter within the function call. The corresponding formal pa-

rameter is written in the same manner, though it must be declared

as an array within the formal argument declarations. When declar-

ing a one-dimensional array as a formal argument, the array name

is written with a pair of empty square brackets. The size of the array

is not specified within the formal argument declaration.

Let us consider an example of passing arrays to a function

include <stdio.h>

main()

{

int n, i;

float avg;

float avr[20]; /*array definition */

float average();/* function declaration */

printf(“Enter number”);

scanf(“%d”, &n);

printf(“\n”);

for (i=0; i<n; ++i)

{

printf(“Enter number”);

scanf(“%f”,& arr[i]);

}

avg=average (n,arr);

printf(“The average of numbers is %f”, avg);

}

float average(a,x) /*function DEFINITION */

int a; /*formal argument declaration */

float x[]; /* formal argument (array) declaration*)

{

float sum ; int i=0;

float avg=0;

for (i=0; i<a; ++i)

{

252 :: Computer Applications

sum+=x[i];

}

avg=sum/a;

return avg;

}

Within main there is a call to the function average. This function

call contains two actual argument—the integer variable n, and the

one dimensional, floating-point array arr. The arr appear as an ordi-

nary variable, within the function call.

In the first line of the function definition, there are 2 formal argu-

ments, called a and x.

When an array is passed to a function, however, the values of the

array element are not passed to the function. But the array name is

interpreted as the address of the first array element. This address is

assigned to the corresponding formal argument when the function

is called. The formal argument therefore becomes a pointer to the

first array element. Arguments passed in this manner are said to be

passed by reference rather than by value. When a reference is made

to an array element within the function , the value of the element’s

subscript is added to the value of the pointer to indicate the address

of the specified array element. Therefore, any array element can be

accessed from within the function . If an array element is altered

within the function., the alteration will be recoganised in the calling

portion of the program.

With the return statement array cannot be used. If the elements of

an array are to be passed back to the calling portion of the program,

the array must either be defined as an external array or it must be

passed to the function as a formal argument.

INTEXT QUESTIONS

1. What is an array ?

2. How is the integer array x, containing 50 elements, declared in

‘C’?

3. What is the subscript of the first element of an array in ‘C’ ?.

4. What are the rules for naming array ?

Arrays :: 253

5. Is it possible to declare and initialize an array in ‘C’ simulta-

neously ? If so, how ?

6. Must the elements of an array be read in or printed out in order

of subscript ?

16.6 MULTIDIMENSIONAL ARRAYS

The arrays we have used so far have been one dimensional. The

elements of the array could be represented either as a single col-

umn or as a single row.

A two dimensional array is a grid containing rows and columns, in

which each element is uniquely specified by means of its row and

column coordinates. Multidimensional arrays are defined in much

the same manner as one dimensional arrays, except that a separate

pair of square brackets is required for each subscript. Thus a two-

dimensional array will require two pairs of square brackets, a three

dimensional array will require three pairs of square brackets and so

on. A multidimensional array definition can be written as

storage-class data-type array-name[expression1][expression 2] ——

—[expression n];

The two dimensional array is like a matrix where position of each

element is specified by both the column and row numbers.

For example:

Matrix x

0 1 2 3 Column

Row 0 4 5 1 0

1 2 6 9 1

2 5 2 6 7

Suppose if want to locate ‘9’ then its specification is x[1][2]

The row subscript generally is specified before the column subscript.

In C, each subscript be written within its own separate pair of brack-

ets.

254 :: Computer Applications

For example: Definition of Multidimensional arrays are given below.

float table[10][10];

char string[10]20];

If a multidimensional array definition include the assignment of

initial values , then care must be given to the order in which the

initial values are assigned to the array element. The rule is that the

last subscript increases most rapidly, and the first subscript increases

least rapidly. Thus, the elements of a two dimensional array will be

assigned by rows, that is , the elements of the first row will be

assigned, then the elements of the second row, and so on.

Suppose int sample [3][4]={1,2,3,4,5,6,7,8,9,10,11,12}

Thus sample [0][0]=1 sample[0][1]=2 sample [0][2]=3 sample [0][3]=4

sample[1][0]=5

sample[1][1]=6 sample[1][2]=7 sample[1][3]=8 sample[2][0]=9

sample[2][1]=10 sample[2][2]=11 sample[2] [3]=12

You can write another definition for array sample as given below:

int sample[3][4]={

{1,2,3,4},

{5,6,7,8,},

{9,10,11,12}

};

 If the definition is given like this

int sample[3][4]={

{1,2,3},

{4,5,6},

{7,8,9}

};

Then this definition assigns values only to the first three elements

in each row. Rest last 3 element of each row gets a value of zero.

If the above definition is written in another way like

int sample [3][4]={1,2,3,4,5,6,7,8,9};

Arrays :: 255

then here also 3 elements will be assigned zeros, but the order of

the assignments will be different. In this case the last 3 elements

will get a value zero.

Multidimensional arrays are processed in the same manner as one

dimensional arrays, on an element-by-element basis.

Let us understand the example of multidimensional arrays of add-

ing two tables of numbers.

#include <stdio.h>

main()

{

int rows, cols;

int a [10][20], b [10][20], c [10][20],

void read (int a [][20], int rows, int cols);

void sum (int a [][20], int b [][20], int c [][20], int rows, int-

cols);

void write(int c [][20], int rows, int cols);

printf(“Enter number of rows and columns”);

scanf(“%d %d”, & rows, & cols);

printf(“\n” First Table”);

read (a,rows, cols);

printf(“\n\n Second table”);

read(b, rows, cols);

sum(a,b,c, rows, cols);

write(c, rows, cols);

}

void read(int a[] [20], int m, int n)

{

int row, col;

for(row-0; row<m; ++ row)

{

for(col=0; col<n; ++ cols)

scanf(“%d”, & a[row][col]);

}

return;

256 :: Computer Applications

}

void sum (int a[][20], int b[] [20], int c[] [20], int m, int n)

{

int row, col;

for(row=0; row<m; ++ row)

for (col=0; col<n; ++ col)

c[row][col]=a[row][col]+b[row][col];

return;

}

void write(int a[][20], int m, int n)

{

int row, col;

for(row=0; row<m; ++row){

for(col=0; col<n; ++col)

printf(“%d”, a[row][col]);

printf(“\n”);

}

return;

}

INTEXT QUESTIONS

7. How are multidimensional arrays defined ?

8. If all the elements of a two-dimensional array are initialized in

the declaration of the array both subscripts may be omitted , is

it is true or false ?

16.7. ARRAYS AND STRINGS

Strings can be represented as a one-dimensional character-type ar-

ray. Each character within the string will be stored within one ele-

ment of the array. For example,

char name[]= {‘N’, ‘A’, ‘T’,’I’,’O’,’N’,’A’,’L’,‘\0’};

Each character in the array occupies one byte of memory and the

last character is always ‘\0’. The terminating null is important,

because it is the only way the functions that work with a string can

Arrays :: 257

know where the string ends. In facts, a string which is not terminated

by a ‘\0’ is not really a string but merely a collection of characters.

The above string can be also initialized as

char name[]= “National”;

In this declaration ‘\0’ is not necessary. C inserts the null character

automatically.

Let us consider an example to demonstrate printing of string

include <stdio.h>

main()

{

char name []=”National”;

int i= 0;

while(i<=8)

{

printf(“%c”, name [i];

i ++;

}

}

The output is National.

With the help of null character this program can be written in the

following manner:

#include <stdio.h>

main()

{

char name []=”National”;

int i=0;

while (name [i]!=’\0’)

{

printf (“%c”, name[i]);

i++;

}

}

258 :: Computer Applications

printf() does not print the ‘\0’. The %s used in printf() is a format

specification for printing out a string.

#include<stdio.h>

main()

{

char name[25];

printf(“Enter your name”);

scanf(“%s”, name);

printf(“%s”, name);

}

It will print the same string as entered from the user. The length of

string should not exceed the dimension of the character array. This

is because the C compiler doesn’t perform bounds checking on char-

acter arrays. scanf() is not capable of receiving multi word strings.

The way to get around this limitation is by using the function gets ().

The example is shown below:

#include <stdio.h>

main()

{

char name [25];

printf(“Enter your full name”);

gets(name);

puts(name);

}

Following is an example to print the length of string using gets and

null character.

include <stdio.h>

main()

{

int i;

char name [30];

printf(“enter some string”);

gets(name);

for(i=0; name [i]!= ‘\0’; i++);

Arrays :: 259

printf(“The length of the string is %d”, i);

}

The length of the string can be calculated with the help of standard

library function strlen().

#include <stdio.h>

main()

{

int i;

char name [30];

printf(“enter some string”);

gets(name);

i=strlen(name);

printf(“The length of the string is %d”,i);

}

There are strcpy(), strcmp, strcat() standard library functions all of

these have different usuages.

include <stdio.h>

main()

{

char name []=”National”;

char name1[20];

strcpy(name1, name);

printf(“\n Original string=%s”, name);

printf(“\n Copied string =%s”, name1);

}

output is : Original string=National

 Copied string= National

strcpy() function copies one string to another.

Similarly, strcmp() function compares two strings to find out whether

they are same or different. The two strings are compared character

by character until there is a mismatch or end of one of the strings is

reached, whichever occurs first. If the two strings are identical,

strcmp() returns a value zero. If they are not, it returns the numeric

260 :: Computer Applications

difference between the ASCII values of the non-matching character.

#include <stdio.h>

main()

{

char name[]=“National”;

char name1[]= “Open”;

int i, j, k;

i=strcmp(name,“National”);

j=strcmp(name, name1);

k= strcmp(name, “National School“);

printf(“\n %d%d%d”, i,j,k);

}

The output is as follows:

0,1,-32

In the first call to strcmp(), the 2 strings are identical, “National” and

“National” and the value returned by strcmp() is zero. In the second

call, the first character of “National”, does not match with first char-

acter of “Open” and the result is 1, which is the numeric difference

between ASCII value of N and 0. In the third call to strcmp() “Na-

tional” does ASCII not match with National school, because the null

character at the end of National does not match the blank in National

school. The values returned is –32, which is the value of null charac-

ter minus the ASCII value of space i.e ‘\0’ minus ‘ ‘, which is equal

to –32.

You can do rest of the standard library functions by yourself.

Two dimensional Array of characters.

Let us first consider an example of 2D array of character.

#include <stdio.h>

main()

{

char sample[6][10]= {

“Vaishali”

Arrays :: 261

“Akanksha”

“Shivansh”

“Tanishq”

“Anmol”

“Yash”

};

int i, flag, a;

char name[10];

printf(“Enter your name”);

scanf(“%s”, name);

flag=False;

for(i=0, i<5;i++)

{

a = strcmp(&sample[i][0], name);

if(a= = 0)

{

printf(“You are a right candidate”);

flag =True;

break;

}

}

if(flag= =False)

printf(“Wrong candidate”);

}

In this program note that how the two dimensional character array

has been initialised. The order of the subscripts in the array decla-

ration is important. The first subscript gives the number of names

in the array, while the second subscript gives the length of each

item in the array.

The function strcmp() is also used to compare two strings which will

give the value 0 if strings are equal. The names would be stored in

the memory as shown in fig. Each string ends with ‘\0’. The ar-

rangement is somewhat similar to that of a two dimensional nu-

meric array.

262 :: Computer Applications

1001 V a i s h a l i \0

1011 A k a n k s h a \0

1021 S h i v a n s h \0

1031 T a n i s h q \0

1041 A n m o l \0

1051 Y a s h \0

Two dimensional character Array.

As scan from the above pattern some of the names do not occupy all

the bytes reserved for them. For example, even though 10 bytes are

reserved for storing the name “Vaishali”, it occupies only 9 bytes.

Thus 1 byte go waste. Similarly, for each name there is some amount

of wastage. This wastage of memory can be avoided using arrays of

pointers which we will discuss in next chapter.

16.8 WHAT YOU HAVE LEARNT

In this lesson you have learnt about arrays, what are one-dimen-

sional array and two dimensional arrays. Now you can easily pass

an array to any function. You have also learnt about multidimen-

sional arrays and strings.

16.9 TERMINAL QUESTIONS

1. When passing an array to a function, how must the array argu-

ment be written?

2. How can a list of strings be stored within a two dimensional

array ?

3. Write a program to compare two strings entered by the user

without help of strcmp() function.

4. Write a program to copy a string without help of strcpy() func-

tion.

5. Write a program to enter strings from user and then sort them

in alphabetical order.(You can use string standard library func-

tions)

6. Write a program to count the number of vowels in a string en-

tered from the user.

7. Write a program to convert a string from lowercase to upper-

case.

8. Write a program to join two strings e.g. Suneeta, Gupta.

1060

(last

location)

Arrays :: 263

16.10 KEY TO IN-TEXT QUESTIONS

1. Array is an ordered collection of elements that share the same

name.

2. int x[50];

3. Zero

4. The same as for naming regular variables or functions. An array

cannot have the same name as a variable or function within the

same program.

5. Yes, the array declaration is followed immediately by an equal

sign. This is followed by the list of values to be assigned en-

closed in braces.

6. No, the elements of an array may be accessed in any order at

all.

7. Storage-class data type array name[expression 1][expression 2]

- - — [expression n];

8. False, only the first (row) subscript can be omitted, with first

pair of square brackets left empty. The second subscript must

always be explicitly specified.

