
18

STRUCTURES AND UNIONS

18.1 INTRODUCTION

We studied earlier that array is a data structure whose element are

all of the same data type. Now we are going towards structure,

which is a data structure whose individual elements can differ in

type. Thus a single structure might contain integer elements,

floating– point elements and character elements. Pointers, arrays

and other structures can also be included as elements within a

structure. The individual structure elements are referred to as

members. This lesson is concerned with the use of structure within

a 'c' program. We will see how structures are defined, and how their

individual members are accessed and processed within a program.

The relationship between structures and pointers, arrays and

functions will also be examined. Closely associated with the structure

is the union, which also contains multiple members.

18.2 OBJECTIVES

After going through this lesson you will be able to

l explain the basic concepts of structure

l process a structure

l use typedef statement

l explain the between structures and pointers

280 :: Computer Applications

l relate structure to a function

l explain the concept of unions

18.3 STRUCTURE

In general terms, the composition of a structure may be defined as

struct tag

{ member 1;

member 2;

member m; }

In this declaration, struct is a required keyword ,tag is a name that

identifies structures of this type.

The individual members can be ordinary variables, pointers, arrays

or other structures. The member names within a particular struc-

ture must be distict from one another, though a member name can

be same as the name of a variable defined outside of the structure.

A storage class, however, cannot be assigned to an individual

member, and individual members cannot be initialized within a struc-

ture-type declaration. For example:

struct student

{

char name [80];

int roll_no;

float marks;

};

we can now declare the structure variable s1 and s2 as follows:

struct student s1, s2;

s1 and s2 are structure type variables whose composition is

identified by the tag student.

It is possible to combine the declaration of the structure com-

position with that of the structure variable as shown below.

storage- class struct tag

Structures and Unions :: 281

{

member 1;

member 2;

- ——

- —-

- member m;

} variable 1, variable 2 --------- variable n;

The tag is optional in this situation.

struct student {

char name [80];

int roll_no;

float marks;

}s1,s2;

The s1, s2, are structure variables of type student.

Since the variable declarations are now combined with the

declaration of the structure type, the tag need not be included.

As a result, the above declaration can also be written as

struct{

char name [80];

int roll_no;

float marks ;

} s1, s2, ;

A structure may be defined as a member of another structure. In

such situations, the declaration of the embedded structure must

appear before the declaration of the outer structure. The members

of a structure variable can be assigned initial values in much the

same manner as the elements of an array. The initial values must

appear in the order in which they will be assigned to their corre-

sponding structure members, enclosed in braces and separated by

commas. The general form is

storage-class struct tag variable = { value1, value 2,-------, value m};

A structure variable, like an array can be initialized only if its stor-

age class is either external or static.

e.g. suppose there are one more structure other than student.

282 :: Computer Applications

struct dob

{ int month;

int day;

int year;

 };

struct student

{ char name [80];

int roll_no;

float marks;

struct dob d1;

};

static struct student st = { “ param”, 2, 99.9, 17, 11, 01};

It is also possible to define an array of structure, that is an array in

which each element is a structure. The procedure is shown in the

following example:

 struct student{

char name [80];

int roll_no ;

float marks ;

} st [100];

In this declaration st is a 100- element array of structures.

It means each element of st represents an individual student record.

18.4 PROCESSING A STRUCTURE

The members of a structure are usually processed individually, as

separate entities. Therefore, we must be able to access the indi-

vidual structure members. A structure member can be accessed by

writing

variable.member name.

This period (.) is an operator, it is a member of the highest prece-

dence group, and its associativity is left-to-right.

e.g. if we want to print the detail of a member of a structure then we

Structures and Unions :: 283

can write as

printf(“%s”,st.name); or printf(“%d”, st.roll_no) and so on. More com-

plex expressions involving the repeated use of the period operator

may also be written. For example, if a structure member is itself a

structure, then a member of the embedded structure can be ac-

cessed by writing.

variable.member.submember.

Thus in the case of student and dob structure, to access the month

of date of birth of a student, we would write

st.d1.month

The use of the period operator can be extended to arrays of struc-

ture, by writing

array [expression]. member

Structures members can be processed in the same manner as ordi-

nary variables of the same data type. Single-valued structure mem-

bers can appear in expressions. They can be passed to functions

and they can be returned from functions, as though they were

ordinary single-valued variables.

e.g. suppose that s1 and s2 are structure variables having the same

composition as described earlier. It is possible to copy the values of

s1 to s2 simply by writing

s2=s1;

It is also possible to pass entire structure to and from functions

though the way this is done varies from one version of 'C' to another.

Let us consider an example of structure:

#include <stdio.h>

struct date {

int month;

int day;

int year;

};

struct student{

284 :: Computer Applications

char name[80];

char address[80];

int roll_no;

char grade;

float marks;

struct date d1;

}st[100];

main()

{

int i,n;

void readinput (int i);

void writeoutput(int i);

printf(“Student system”);

printf(“How many students are there ?”);

scanf(“%d” &n);

for (i=0; i<n; ++i){

readinput (i);

if(st[i].marks <80)

st[i].grade=’A’;

else

st[i].grade='A'+;

}

for (i=0; i<n; ++i)

writeoutput(i);

}

void readinput (int i)

{

printf(“\n student no % \n”, i+1);

printf(“Name:”);

scanf(“%[^\n]”, st[i].name);

printf(“Address:”);

scanf(“%[^\n]", st[i].address);

Structures and Unions :: 285

printf(“Roll number”);

scanf(“%d”, &st[i].roll_no);

printf(“marks”);

scanf(“%f”,&st[i].marks);

printf(“Date of Birth {mm/dd/yyyy)”);

scanf(“%d%d%d”, & st[i].d1.month & st[i].d1.day, & st[i].d1.year);

return;

}

void writeoutput(int i)

{

printf(“\n Name:%s”,st[i].name);

printf(“Address %s\n”, st[i].address);

printf(“Marks % f \n”, st[i].marks);

printf(“Roll number %d\n”, st[i].roll_no);

printf(“Grade %c\n”,st[i].grade);

return;

}

It is sometimes useful to determine the number of bytes required by

an array or a structure. This information can be obtained through

the use of the sizeof operator.

INTEXT QUESTIONS

1. What is the main reason for using structure ?

2. What special keyword is used in defining a structure ?

3. Define structure tag and what is its purpose?

4. In what two ways can a structure variable be declared?

18.5 USER-DEFINED DATA TYPES (Typedef)

The typedef feature allows users to define new data types that are

equivalent to existing data types. Once a user-defined data type has

been established, then new variables, arrays, structure and so on,

can be declared in terms of this new data type. In general terms, a

new data type is defined as

286 :: Computer Applications

typedef type new type;

Where type refers to an existing data type and new-type refers to

the new user-defined data type.

e.g. typedef int age;

 In this declaration, age is user- defined data type equivalent to type

int. Hence, the variable declaration

age male, female;

is equivalent to writing

int age, male, female;

The typedef feature is particularly convenient when defining

structures, since it eliminates the need to repeatedly write struct

tag whenever a structure is referenced. As a result, the structure

can be referenced more concisely.

In general terms, a user-defined structure type can be written as

typedef struct

{ member 1;

member 2:

- - - -

- - - -

member m;

}new-type;

The typedef feature can be used repeatedly, to define one data type

in terms of other user-defined data types.

18.6 STRUCTURES AND POINTERS

The beginning address of a structure can be accessed in the same

manner as any other address, through the use of the address (&)

operator.

Thus, if variable represents a structure type variable, then & variable

represents the starting address of that variable. We can declare a

pointer variable for a structure by writing

type *ptr;

Structures and Unions :: 287

Where type is a data type that identities the composition of the

structure, and ptr represents the name of the pointer variable.

We can then assign the beginning address of a structure vari-

able to this pointer by writing

ptr= &variable;

Let us take the following example:

typedef struct {

char name [40];

int roll_no;

float marks;

}student;

student s1,*ps;

In this example, s1 is a structure variable of type student, and ps is

a pointer variable whose object is a structure variable of type student.

Thus, the beginning address of s1 can be assigned to ps by writing.

ps = &s1;

An individual structure member can be accessed in terms of its

corresponding pointer variable by writing

ptr →member

Where ptr refers to a structure- type pointer variable and the operator

→ is comparable to the period (.) operator. The associativity of this

operator is also left-to-right.

The operator → can be combined with the period operator (.) to

access a submember within a structure. Hence, a submember can

be accessed by writing

ptr → member.submember

18.7 PASSING STRUCTURES TO A FUNCTION

There are several different ways to pass structure–type information

to or from a function. Structure member can be transferred indi-

vidually , or entire structure can be transferred. The individual struc-

tures members can be passed to a function as arguments in the

function call; and a single structure member can be returned via

the return statement. To do so, each structure member is treated

the same way as an ordinary, single- valued variable.

288 :: Computer Applications

A complete structure can be transferred to a function by passing a

structure type pointer as an argument. It should be understood

that a structure passed in this manner will be passed by reference

rather than by value. So, if any of the structure members are altered

within the function, the alterations will be recognized outside the

function. Let us consider the following example:

include <stdio.h>

typedef struct{

char *name;

int roll_no;

float marks ;

} record ;

main ()

{

void adj(record *ptr);

static record stduent={“Param”, 2,99.9};

printf(“%s%d%f\n”, student.name,

student.roll_no,student.marks);

adj(&student);

printf(“%s%d%f\n”, student.name,

student.roll_no,student.marks);

}

void adj(record*ptr)

{

ptr → name=”Tanishq”;

ptr → roll_no=3;

ptr → marks=98.0;

return;

}

Let us consider an example of transferring a complete structure,

rather than a structure-type pointer, to the function.

include <stdio.h>

typedef struct{

Structures and Unions :: 289

char *name;

int roll_no;

float marks;

}record;

main()

{

void adj(record stduent); /* function declaration */

static record student={“Param,” 2,99.9};

printf(“%s%d%f\n”,

student.name,student.roll_no,student.marks);

adj(student);

printf(“%s%d%f\n”,

student.name,student.roll_no,student.marks);

}

void adj(record stud) /*function definition */

{

stud.name=”Tanishq”;

stud.roll_no=3;

stud.marks=98.0;

return;

}

INTEXT QUESTIONS

5. What rules govern the use of the period (.) operator?

6. What is meant by an array of structure?

7. What characteristic must a structure have in order to be initial-

ized within its declaration?

8. What is the meaning of the arrow operator?

18.8 UNIONS

Union, like structures, contain members whose individual data types

may differ from one another. However, the members that compose a

union all share the same storage area within the computer’s memory

290 :: Computer Applications

, whereas each member within a structure is assigned its own unique

storage area. Thus, unions are used to conserve memory.

In general terms, the composition of a union may be defined as

union tag{

member1;

member 2;

 - - -

member m

};

Where union is a required keyword and the other terms have the

same meaning as in a structure definition. Individual union vari-

ables can then be declared as storage-class union tag variable1,

variable2, -----, variable n; where storage-class is an optional storage

class specifier, union is a required keyword, tag is the name that

appeared in the union definition and variable 1, variable 2, variable

n are union variables of type tag.

The two declarations may be combined, just as we did in the case of

structure. Thus, we can write.

Storage-class union tag{

member1;

member 2;

 - - -

member m

}variable 1, varibale2,, variable n;

The tag is optional in this type of declaration.

Let us take a 'C' program which contains the following union

declaration:

union code{

char color [5];

int size ;

}purse, belt;

Here we have two union variables, purse and belt, of type code.

Structures and Unions :: 291

Each variable can represent either a 5–character string (color)

or an integer quantity (size) of any one time.

A union may be a member of a structure, and a structure may be a

member of a union.

An individual union member can be accessed in the same manner

as an individual structure members, using the operators (→) and.

Thus if variable is a union variable, then varibale.member refers to a

member of the union. Similarly, if ptr is a pointer variable that points

to a union, then ptr→ member refers to a member of that union.

Let us consider the following C program:

include <stdio.h>

main()

union code{

char color;

int size;

};

struct {

char company [10];

float cost ;

union code detail;

}purse, belt;

printf(“%d\n”, sizeof (union code));

purse.detail.color=’B’;

printf(“%c%d\n”, purse.detail.color,purse.detail.size);

purse.detail.size=20;

printf(“%c%d\n”, purse. detail.color,purse.detail.size);

}

The output is as follows:

2

B- 23190

@ 20

The first line indicates that the union is allocated 2 bytes of memory

292 :: Computer Applications

to accommodate an integer quantity. In line two, the first data item

[B] is meaningful, but the second is not. In line three, the first data

item is meaningless, but the second data item [20] is meaningful. A

union variable can be initialized, provided its storage class is either

external or static. Only one member of a union can be assigned a

value at any one time. Unions are processed in the same manner,

and with the same restrictions as structures. Thus, individual union

members can be processed as though they were ordinary variables

of the same data type and pointers to unions can be passed to or

from functions.

18.9 WHAT YOU HAVE LEARNT

In this lesson you have learnt about structures. Structures contain

the variables of different data types. You can also pass structures to

functions. You have also learnt about unions. All members of a union

share the same storage area within the computer’s memory.

18.10 TERMINAL QUESTIONS

1. What is a structure ? How does a structure differ from an

array ?

2. What is a member ? What is the relationship between a mem-

ber and a structure ?

3. How can a structure variable be declared ?

4. How is an array of structures initialized ?

5. How is a structure member accessed ? How can a structure

member be processed ?

6. What is the precedence of the period operator ? what is its asso-

ciativity ?

7. What is the purpose of the typedef feature ?

8. What is a Union ?

9. How does a union differ from a structure ?

10. How can an entire structure be passed to a function ?

Structures and Unions :: 293

18.11 KEY TO INTEXT QUESTION

1. Because it is helpful to group together non-homogenous data

into a single entity.

2. struct

3. A structure tag is a name associated with a structure template.

This makes it possible later to declare other variables of the

same structure type without having to rewrite the template it-

self.

4. By preceding the variable name with the keyword struct and

either a previously defined structure tag or a template.

5. An individual member of a structure is accessed by following

the name of the structure variable with the period operator and

the member name. The member name must be explicitly speci-

fied.

6. It is an array in which each element is a structure.

7. It must be of the static storage class.

8. The notation a b means (*a).b, that is, “ the member named b of

the structure pointed to by a.

